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Abstract. How the firing rate of a neuron carries information depends on the time over which
rates are measured. For very short times, the amount of information conveyed depends, in a
universal way, on the mean rates only (trial-to-trial variability is irrelevant) and the cell response
can be taken to be binary (although an ideal binary response would convey more). For longer
times, noise as well as the graded nature of the response come into play, with opposite effects.
Which times can be considered ‘short’ varies with the brain area considered and, possibly, with
the processing speed it is required to operate at.

1. Introduction

The rate at which it emits spikes is, for a neuron, an important way of coding information,
even though more complex codes (involving, e.g., the temporal structure of the train of
spikes, or the degree of synchrony with the spiking of other cells) might also be relevant
in certain situations. One can measure, from single-cell or multiple single-cell recording
experiments, the amount of information, in bits, contained in the distribution of firing rates
that characterizes the response of a neuron to different sensory perceptions and internal
states (here collectively called ‘stimuli’). Such measurements are becoming increasingly
important, as the study of information processing in the brain begins to include quantitative
analyses, and attempts to utilize theoretical models at a quantitative level.

A most prominent correlate of the average amount of information in the firing rate of a
neuron is the sparseness of the distribution of mean rates to each of the stimuli [1]. Sparse
firing, with only a small fraction of the stimuli evoking substantial responses (an example
being place-related firing in the rat hippocampus), carries little information, whereas a more
even use of its own firing range allows the neuron to transmit more information (as, e.g.,
in the monkey temporal visual cortex [2]). The effects of sparseness have indeed been
analysed in several theoretical models, for example in associative memory networks, in
which sparse coding, while reducing the information content of each memory, increases the
number of memories that can be stored [3, 4].

At fixed sparseness, there are at least two more aspects of the firing which are important
in determining how informative it is. The first is how variable, or noisy, are responses to
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the same stimulus. The second is how close the distribution of mean rates is to being binary
or bimodal, or conversely how graded is the response of the cell. Both aspects are often
neglected in the construction and analysis of theoretical models, making the correspondence
between such models and real neurons less direct. Many simple models, and a lot of common
sense intuition, are based on noiseless binary variables. Deviations from this idealized case
have opposite effects: noise always reduces information transmission, whereas a more
graded response enhances it. The net effect depends on the time the neuron’s activity is
sampled for. We discuss here how to analyse the firing of real cells in these terms, and
provide examples from single cells recorded in the rat somatosensory system and in the
primate temporal visual cortex.

We note that naive information estimates require, to be accurate, very large samples of
data. In practical situations, especially with mammals, in which the size of the data sample
available for each cell is often limited, these estimates are both very imprecise and subject
to systematic error. We have recently introduced a procedure based on the subtraction
from naive estimates of an analytically calculated correction term, which results in nearly
unbiased estimates [5, 6]. This procedure has been employed in the analysis that follows.

2. The information in the full rate distribution

The neuronal responses considered here are the rates,r, recorded from a cell in
correspondence with a given ‘stimulus’,s (which, as noted above, can be intended as
any combination of sensory, motor or internal correlates of the recording). Stimuli are
taken from adiscreteset S of S elements, each occurring with probabilityP(s). Rates
are measured simply by counting the number of spikes in a given time window [t0, t0 + t ],
and hence are just positive integers, (except they are divided byt itself). The probability
of events with rater is denoted asP(r), and thejoint probability distribution asP(s, r).
The specific information about each stimulus, gained by knowing the rate response, is, on
average acrossr,

i(s, t) =
∑

r

P (r|s) log2[P(r|s)/P (r)] . (1)

The information for each stimulus is already an interesting quantity to extract from
a recording. It is important to remember, though, that it is defined onlyrelative to the
probability distribution ofall stimuli considered, i.e.P(s ′) for eachs ′ (the other stimuli enter
equation (1) throughP(r), which depends on their probabilities). Within such relativity, it
can for example quantify [7, 2] how much more information a face selective neuron gives,
with its firing rate, about faces than about non-face stimuli.

By further averaging the specific information across stimuli, according to theira priori
probabilities, one obtains the mutual information

I (t) =
∑
s∈S

∑
r

P (s, r) log2
P(s, r)

P (s)P (r)
(2)

between stimuli and rates. It quantifies how much the firing rate of a cell is potentially
valuable in discriminating among members of the setS, i.e. it provides a relative, but
objective, measure of its ‘worth’, within that task.

Ideally, one would like to measurei(s, t) and I (t) by directly applying equations (1)
and (2). In practice one has available, instead ofP(s, r), the frequency table computed
on the basis ofN events,PN(s, r). It is easy to see that ifPN(s, r) is brutally inserted in
equations (1), (2) in place ofP(s, r), information is grossly overestimated. For example,
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if the underlying P(s, r) is close enough to a continuous distribution inr, that the
probability of having exactly coincident rates in the frequency table vanishes, then both
information estimates would be equal to their upper bounds,i(s, t) = − log2 P(s) and
I (t) = − ∑

s P (s) log2 P(s); any cell would then yield full knowledge about any set of
stimuli! We have discussed procedures to avoid this problem [6], which if untreated makes
information estimates from mammalian recording meaningless. In general, a regularization
of the responses is necessary, following which the finite sampling effects can be evaluated
and subtracted out. Since the regularization itself causes an information loss that is difficult
to quantify, it should be kept minimal to minimize this loss. A simple form of discretization
is the binning intoR response bins, in which case the correction term to be subtracted
depends solely on the numberRs of bins relevant for each stimulus [6]:

C1 = 1

2N ln 2

[∑
s

Rs − R − (S − 1)

]
. (3)

When rates are computed from a time window short enough that the maximal number
of spikes recorded is not too high, the responses are already binned, no regularization is
necessary, and, provided finite sampling effects can be controlled, one measures in fact the
‘true’ underlying information. In particular, as the window shrinks to zero, the number of
bins eventually reduces to just two (one spike or none), which implies that (a) responses
are binary and (b) naive estimates can be easily corrected even with just a few trials per
stimulus, subtracting a smallC1 correction.

3. Time derivatives of the information

To study the initial rate at which information accumulates from timet0, one can also consider
directly its time derivatives att0, which are hardly affected at all by the limited sampling
problem (although a small systematic error can still be calculated with error propagation
and subtracted out).

For t small, i(s, t) can be approximated by the Taylor expansion

i(s, t) = t it (s) + t2

2
itt (s) + · · · (4)

where it (s), itt (s) are the first two time derivatives ofi(s) calculated att0. The first
derivative is universal, i.e. independent of firing statistics, while the second takes a very
simple expression under the assumption that the firing of the cell is purely Poissonian (note
that it can be singular, instead, in other cases). To first order int , and with the Poisson
assumption to second order, the probabilityP(n|s) of emittingn spikes in the time window
is determined solely by the mean raters to each stimuluss. To second order int we have

P(0|s) ' 1 − trs + 1
2(trs)

2

P(1|s) ' trs(1 − trs)

P (2|s) ' 1
2(trs)

2

P(n > 2|s) ' 0 .

(5)

Denoting with r̄ = ∑
s P (s)rs the grand mean rate to all stimuli, and witha =

r̄2/
∑

s P (s)r2
s the sparseness [4] of the rate distribution, we get

it (s) = rs log2
rs

r̄
+ r̄ − rs

ln 2
(6)
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and for Poisson statistics

iPois
t t (s) = r2

s log2 a + r̄(2rs − r̄)(1 − a)

a ln 2
. (7)

It can be easily seen thatit (s) > 0, while iPois
t t (s) can be positive or negative (but

IPois
t t ≡ (r̄2/a ln 2)[ln a + (1 − a)] < 0, implying that for Poisson statistics the rate of

information transmission always slows down after the first spike).
The simple formulae forit (s) andiPois

t t (s) are remarkable because they require a measure
of only the mean ratesrs , and not of the full distribution of rates to each stimulusP(r|s).
This translates into a clear advantage for measuring information, when data are scarce.

Several interesting relationships should be appreciated. First of all,it (s) itself represents,
apart from a rescaling by the overall mean rate, a universal U-shaped curve which gives,
whatever the rate distribution, the initial speed of information acquisition as a function of
the rate. Dividing by the overall mean rate and taking an average across stimuli one has

8 =
∑

s

P (s)
rs

r̄
log2

rs

r̄
(8)

which has the meaning of mean information per spike. It is easy to show that in general,
for any distribution of rates,

0 < 8 < log2(1/a). (9)

and for the distributions of rates that are close to binary, with one of the peaks at zero,
8 ≈ log2(1/a), while if they are nearly uniform, or strongly unimodal,8 � log2(1/a).

Extensive recordings of rat hippocampal and neocortical cell activity ([1], and
unpublished observations), indicate that8 anda (or equivalently log2(1/a)) could be used
almost interchangeably to characterize firing rate distributions: one parameter turns out to
be an excellent predictor of the other.

In recordings of primate temporal cortical cells, it was often found that a cell firing at
close to its grand mean rate carried little or no specific information [7]. The dependence of
i(s, t) on rs for finite t (50–500 ms) closely reproduced that predicted att → 0, i.e. that
associated with the time derivativeit (s).

We note that whenn stimuli are presented each with equal frequency, the information
per spike8 is simply related to the breadth of tuning [8]

H = − 1

log2 n

∑ r

nr̄
log2

r

nr̄
(10)

which was used to characterize the distribution of responses, e.g. to gustatory stimuli in the
monkey [9]. In fact

8 = (1 − H) log2 n (11)

and when the cell responds to only one stimulus,H = 0 and 8 = log2 n (extreme
selectivity), whereas when it responds equally to all stimuliH = 1 (broad tuning) and
8 = 0 (no information).

4. Real responses and their idealization

Figure 1 provides examples of the way the firing rate of real cells, when measured over
increasing time windows from approximately the onset of the response to static stimuli,
conveys information about those stimuli. The information in the actual rates is compared
with the information present in binarized responses, and with that available from an ideal
binary unit.
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Figure 1. Top: information in the number of spikes emitted in response to four electrical
stimuli (——) by a cell in the rat SI cortex, in the binarized responses (– – –) and in the
noiseless responses of an ideal binary unit (—· —). The initial slope att0 is also indicated
(- - - -). Bottom: information in the responses to 20 face stimuli by a cell in the monkey IT
cortex, with the same notation.

Responses are binarized by taking as ‘1’ all responses above a certain threshold, and
as ‘0’ all others, with the threshold chosen, in each window, to optimize the amount of
information transmitted. Note that this binarization preserves at least part of the original
trial-to-trial variability, but results in an apparent sparseness different from the true value.

Ideal binary responses are simply those of a unit operating at the same grand mean rate
and sparseness as the real unit (in each window), but with zero noise, i.e. mean rates as
well as the rates on individual trials are taken to be zero for a fraction(1−a) of the stimuli,
and r̄/a for the remaining fractiona.

In addition, the time derivativeIt is shown, as calculated for actual responses from
the shortest window considered (2 ms). For binarized responses the derivative is the same,
because for very short windows the responses are already binary; whereas for ideal binary
units the derivative is higher, as it is clear from figure 1 and equation (9). Note, though,
that for the cell of figure 1 (bottom) the time derivative was almost constant, even when
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computed from the distribution of mean rates over longer windows (whereas for that of
figure 1 (top) it progressively decreased).

Figure 1 (top) refers to a cell in the rat somatosensory cortex, responding to electrical
stimulation of four different intensities. The information in the actual rates rises steeply
from t0 (15 ms post-stimulus onset) and then slows down and saturates whent is of the
order of a few hundred milliseconds. Binarized responses convey less information, but
even for long windows only by a factor of about3

4. An ideal binary unit with the same
sparseness would yield almost instantly all the information it can convey. This levels off
around 0.6 bits, which is above the value for the real cell, thanks to the lack of variability, at
short times,t 6 100 ms; but it is inferior for longer times, when the binary output becomes
limiting if contrasted with actual graded output.

Figure 1 (bottom) refers to a cell in the primate visual cortex, responding to 20 face
stimuli. t0 is 100 ms post-stimulus onset, near the peak of the response. The information
in the actual rates accelerates almost instantly from a lower initial slopeIt , and slows
down only later, having reached values twice those for the binarized responses. In this
case the time derivative provides a poorer indication of the information available in the
full response. The positive second derivative att0 reflects a limited trial-to-trial variability
in this cell, much less than for Poisson statistics. This may be related to the operation
of recurrent circuits. The ideal binary unit with the same sparseness would again be more
informative at short times, but now the time after which the advantages of a graded response
take over is shorter,t ≈ 25 ms.

Analyses of this type are being applied to cells in different brain areas.
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