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Abstract. Networks of threshold-linear neurons have previously been introduced and analysed
as distributed associative memory systems. Here, results from simulations of pattern retrieval in
a large-scale, sparsely connected network are presented. The storage capacity lies nearα = 0.8
and 1.2 for binary and ternary patterns respectively, in reasonable accordance with theoretical
estimates. The system is capable of retrieving states strongly correlated with one of the stored
patterns even when the initial state is a highly degraded version of one of these patterns. This
pattern completion ability holds for an extensive number of memory patterns, up toα ≈ αc/2,
thereby increasing the credibility of the model as an effective associative memory.

1. Introduction

The design and study of networks capable of functioning as associative memory systems
has long been a central theme in the field of theoretical neural networks. Speculation that
brain regions rich in feedback loops, such as CA3 in the hippocampus, the olfactory cortex,
and neocortex, might implement associative memories has led to the topic also featuring
prominently in computational neuroscience. In most of the early models, each neuron is
simply described by a binary variable representing its output activity, with the neurons
linked by a network of binary-valued synapses (Willshawet al 1969, Marr 1971, Gardner-
Medwin 1976). The class of alternative models ushered in by Hopfield (1982, 1984) had the
great virtue of being amenable to analysis by techniques from statistical physics (see Amit
(1989) for a review), though they too had many unbiological features. Recent years have
seen much progress, for both classes of model, in making the models more biologically
realistic; in the binary-synapse case, see for example Buckingham (1991) and Bennettet al
(1994).

The current paper is concerned with a model developed by Treves (1990, 1991a) from
the Hopfield model, in which the neuronal response function is taken to be threshold-linear
in form. Although the system can be specified in completely formal terms, it is as a
simple model of the pyramidal cells in CA3 that most discussion of it has occurred (Treves
and Rolls 1991, 1992), this being in the context of the hypothesis that the hippocampus
serves as a short-term memory store (Marr 1971, Rolls 1987, Treves and Rolls 1994).
The present study uses computer simulations to investigate pattern retrieval in a large-scale
network of threshold-linear cells. To mimic conditions in CA3 (Amaralet al 1990), the cells
are interconnected in a sparse, asymmetric manner. Modelling neurons as graded response
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units with no intrinsic saturation in their rates introduces qualitative differences in relaxation
dynamics, such as the disappearance of spin-glass states (Treves 1991b). Sparse connectivity
is expected to render the dynamics even less rigid. It is interesting therefore to examine the
effects on static properties for which related analytical quantifications are available, such
as storage capacity, and on dynamical properties explorable only with simulations, such as
attraction basins. Previous studies have investigated the storage and retrieval of low activity
patterns in symmetrically connected nets of graded-response neurons, e.g. Amit and Tsodyks
(1991b), K̈uhn and B̈os (1993), but with an emphasis on seeking retrieval states with low
rates. Our emphasis is on studying the effects of diluted connectivity and asymmetry.

After a definition of the model in section 2, some relevant analytical results regarding its
performance are reviewed in section 3, followed by a description of the simulation aims in
section 4. Relevant aspects of the simulation method are covered in section 5. The results
are presented in section 6 and the paper closes with a brief discussion of models which use
more realistic dynamics.

2. The model

The model is similar to that analysed in Treves (1991a). Readers interested in a fuller
justification of the biological relevance of the model than that provided below should consult
Treves (1991a) and Treves and Rolls (1991). There areN cells, indexed byi, each of which
crudely represents a cortical pyramidal cell. Associated with each cell is a single dynamical
variableVi , a positive scalar denoting the cell’s spiking rate averaged over a short interval.
The cells are sparsely interconnected by an asymmetric network of ‘synapses’. The value
of Vi is determined (via a response function) by the sum of the inputs to the cell, denoted
hi . This sum is over inputs from the other pyramidal cells, external sources, and inhibitory
plus other regulatory cells. Specifically

hi =
∑
j 6=i

J c
ijVj + sµ(η

µ

i − a)

a
+ b

(
1

N

∑
j

Vj

)
. (1)

The synapses between real pyramidal cells are excitatory; in the current model this positive
synaptic efficacy is regarded as the sum of a positive baseline term plus a term,J c

ij ,
describing the effect on the synapse connecting cellj to cell i of encoding a set of firing
patterns according to some learning rule. We restrict ourselves to the particular case of using
a covariance rule to store random binary or ternary patterns, as these cases are amenable to
analysis. The case of ternary encoding also serves as a check that the network’s operation
is not dependent on the use of binary representations. Each patternηµ, µ = 1, . . . , p,
represents a set of firing rates across theN cells. Eachηµ

i is drawn from the probability
distributionP(η). For binary patterns

P(η) = aδ(η − 1) + (1 − a)δ(η) (2)

and for ternary patterns we use the representative distribution (Treves 1990)

P(η) = 1
3aδ

(
η − 3

2

) + aδ
(
η − 1

2

) + (
1 − 4

3a
)
δ(η). (3)

In both casesa is the expected value of the activity(〈η〉) and thesparsity (〈η〉2/〈η2〉) in
the patterns. The covariance rule prescription for the modifiable component of the synaptic
efficacies is

J c
ij = cij
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wherecij is a 0/1 variable indicating whether a synaptic connection exists or not. Each
cij (i 6= j) is drawn from the probability distribution

P(c) = C

N − 1
δ(c − 1) +

[
1 − C

N − 1

]
δ(c) (5)

where the parameterC is the expected fan-in and fan-out of each pyramidal cell. So, for
example, settingC = N − 1 yields the fully connected network studied in Treves (1990),
whereas settingC � N yields the strongly diluted asymmetric network studied in Treves
(1991a). We shall consider the regime of asymmetric moderate dilution, takingC = 0.1N .
This is a step towards modelling the effects of the low probability (∼ 0.02) of contact
between any two pyramidal cells in the CA3 region of the hippocampus (Amaralet al
1990).

The second term in thehi expression is the effect of an external signal evoking one of
the stored patterns,ηµ, with strengthsµ. The inclusion of this term allows us to present
cues to the network during the retrieval phase in two distinct ways: either via the external
signal, or by initializingV to correlate with a pattern, settingsµ to zero. Further details on
these approaches are given in section 5.

The functionb(x) models the net effect of a number of terms, including the result
of activity being transmitted through the baseline component of the pyramidal–pyramidal
synapses, fast inhibition from local inhibitory interneurons, and the influence of various
modulatory factors. As none of these terms is pattern specific, the simplifying assumption
is made that the functionb(x) acts solely to regulate the mean activity in the network,
keeping it near toa, the mean activity in the stored patterns. As in earlier work (Treves
1990), a cubic function is used:

b(x) = κ(a′ − x)3 (6)

with a′ being an adjustable parameter set near or equal toa.
A threshold-linear response function is assumed, namely

V = 2[h − Thr] g(h − Thr) (7)

where Thr is the threshold below which the input elicits no output,g is the gradient of
response aboveThr, and 2[· · ·] is the Heaviside function. Evidence for the biological
validity of such a response function comes from data on how the adapted firing rate of
pyramidal cells varies with the strength of current injected into the soma (see Treves and
Rolls (1991) and references therein), plus attempts to derive theoreticalV (h) functions for
cells modelled as ‘integrate-and-fire’ devices (Amit and Tsodyks 1991a).

3. Relevant analytical results

Using standard methods from statistical physics, Treves (1990, 1991a) has obtained results
for the storage capacity as a function of the pattern sparsity parametera in the limit C → ∞
for the extremal cases ofC = N −1 andC/N → 0, respectively. The storage capacity(αc)

is the maximum value of the memory loading parameterα ≡ p/C for which the network
possesses ‘retrieval states’, i.e. solutions in which the overlap between the network stateV
and one of the stored patterns is both stationary and macroscopic. The overlap with theµth
pattern is defined as:̂xµ = 1

Na

∑
i Vi(η

µ

i − a). The quality of the retrieval can be gauged
by the overlap size or by how much information the state conveys about the stored pattern.
Both of these measures disappear discontinuously atα = αc. Furthermore, retrieval states
are only found for values ofg lying in a certain interval, which shrinks and vanishes as
α → αc from below.
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There are no analytical results available for the moderately diluted asymmetric network
studied in this paper. However, the analyses of the two extremal architectures discussed
above serve as a guide as to how well this intermediate architecture might perform as
an associative memory. In this regard, it is important to note that in the limit of sparse
coding (a → 0) the storage capacities of the fully connected net and the highly dilute
net become equivalent. The current work is concerned with the storage and retrieval of
moderately sparse patterns, specifically those characterized bya = 0.1. By interpolation
from the αc versusa plots in Treves (1990, 1991a), theαc values in the case of binary
stored patterns witha = 0.1, usingsµ = 0, are approximately 0.35 and 1.0 for the fully
connected and highly dilute nets, respectively.

Furthermore, results have been obtained for thesymmetricallydiluted case, i.e. for
networks in whichcij = cji (D O’Kane, personal communication). In the notation of
Treves (1990, 1991a), the result is expressed in terms of two equations

1 = αA3
[
γ /A2

1 + (1 − γ )/A2
2

]
1/(gT0) = A2 + α(A2 − A1)

[
γ /A1 + (1 − γ )/A2

]
which have to be satisfied simultaneously for retrieval states to exist. Here,γ = C/N

is the degree of symmetric dilution,T0 measures the variance of the postsynaptic term of
the learning rule (see equation (16) of Treves and Rolls (1991)), andA1, A2, A3 are the
relevant averages overPη which enter the capacity equations (see equations (21) of Treves
and Rolls (1991)). For further clarification, for example on how to extract the information
capacity, we refer the reader to Treves (1990) and Treves and Rolls (1991). Unsurprisingly,
the predicted performance is qualitatively the same as that described above, withαc = 0.79
for C/N = 0.1, a = 0.1 binary patterns, andsµ = 0.

In performing the analysis the assumption is made that in the retrieval phase〈V 〉 = a.
The sparsity of the retrieved representation(〈V 〉2/〈V 2〉), denotedar , is not explicitly
constrained. For ternary encodings, the analysis predicts thatar is usually less thana.
Lowering the sparsity generally allows the storage capacity to rise (Treves 1990, 1991): for
the ternary distribution in equation (3), witha = 0.1, analysis of the symmetrically diluted
system yieldsαc ≈ 1.2.

4. Simulation aims

Broadly, the purpose of the numerical simulations is to assess how well a large, sparsely
connected network of threshold-linear units can retrieve sparse patterns previously encoded
in the synaptic network via the covariance rule. Specifically, there are five aims.

(i) to study how retrieval quality varies with the number of patterns stored.
(ii) to estimate the storage capacity of the system.
(iii) to study the types of final states produced by the network.
(iv) to study how retrieval quality depends on the size of the cue presented, i.e. to assess

the network’s ‘pattern completion’ ability.
(v) to study the effect of a persistent external cue during retrieval.

A subsidiary aim (where possible) is to compare these simulation results with analytical
results for the related symmetrically dilute system. In so doing, the emphasis will be on
checking for broad consistency rather than exact correspondence. This is due to the two
models differing not just in their connectivity structure, but also in their dynamics (see
below), plus the necessity of taking a mean-field approximation and theC → ∞ limit in
the analysis.
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5. Simulation method

Dynamics

The simulation program implements the model defined in section 2, but with slightly
different dynamics: cells are updated in parallel according to

V (t + 1t) = (1 − 1t)V (t) + 2[h(t) − Thr] g(h(t) − Thr)1t. (8)

This is a forward Euler integration scheme for the differential equation

dV (t)

dt
= −V (t) + 2[h(t) − Thr] g(h(t) − Thr). (9)

These dynamics were chosen because the dynamics of real neurons are also governed by
continuous equations (albeit more complex equations than (9)) and because they can be
implemented more efficiently on parallel computers than serial dynamics†. A value of
0.2 was used for1t (comparison runs using1t = 0.02 required far longer run times but
produced similar results, both in terms of average retrieval rates and with respect to whether
individual trials led to retrieval or not).

Parameter values

As mentioned earlier,C/N is set equal to 0.1, as isa. Given these two sources of sparsity,
a large network is required in order to get sensible statistical results. A study of finite-
size effects (summarized in figure 2) suggested thatN = 8192 would be an acceptable
compromise between the desire for a biologically realistic largeN and the constraint of
limited computing resources, thusN = 8192 was the standard network size. The value ofg

was chosen (at eachα value) to be that expected to maximize the information carried by the
final state about the stored pattern, according to the analysis of the symmetricC/N = 0.1
case. In the case of binary patterns, for example, these values decrease monotonically from
0.36 atα = 0.1 to 0.15 atα = 0.79‡. (In trials withα values above 0.79,g was set to 0.15.)
The threshold parameterThr was set to zero. A value of 105 was used forκ; a high value is
needed to keep the activity near toa but a simple stability analysis using equations (1) and
(8) indicates that values above O(105) lead to large oscillations of the activity. Even with
κ = 105 some small oscillations remain but these do not seriously disturb the operation
of the system. For binary stored patternsa′ was set to 0.1; for ternary patterns setting
a′ = 0.05 yielded better results.

Presentation of the cue

There are two ways of supplying the network with a cue, that is, a pattern related to one
(taken to be theµth) pattern encoded in the synaptic matrix. In the ‘external’ mode, the
initial cell activitiesVi are drawn from the pattern element distributionP(η) so that they are
random with respect to the activities in the target patternηµ, and a persistent signal evoking
theµth pattern is applied by settingsµ > 0 in (1). This signal represents an idealization of
how external afferents to a network might convey a cue.

† The simulations were performed on a Thinking Machines CM-200 SIMD parallel computer.
‡ Varying g in this manner is biologically reasonable, as the gain is considered to reflect not just the intrinsic
response properties of the cells, but also their modulation, e.g., by inhibition, and as such it should be dependent on
current conditions, including the memory load. At a computational level, theoretical work on associative networks
of graded-response cells has also shown that lowering the gain asα increases is a sensible strategy (Waughet al
1991).
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In the ‘internal’ mode, the cue defines the initialVi , and sµ = 0. Clearly for an
associative memory to function in a wider system, any such ‘internal’ cue must itself have
been generated by activity external to the network (Treves and Rolls 1992). Nevertheless the
internal cueing mode is simple to study and we shall focus primarily on it. A cue is formed
from one of the stored patternsηµ by replacing a randomly selected fraction(1− f ) of the
pattern elements with values drawn from the appropriate probability distributionP(η).

Performance measures

Several measures can be used to quantify how well the stateV matches a stored patternηµ.
One is the mean informationIc (in bits) carried by an element ofV about the corresponding
element ofηµ. The procedure used for computingIc is outlined in Treves (1990). The
overlapx̂µ defined in section 3 is easier to compute, but unfortunately has an upper bound
that is rather sensitive to the characteristics of the vectorsV andηµ. In practice, a more
useful measure is the Pearson correlation coefficient

rµ = 〈V ηµ〉 − 〈V 〉〈ηµ〉√
(〈V 2〉 − 〈V 〉2)(〈(ηµ)2〉 − 〈ηµ〉2)

(10)

which has maximum value 1.0. This correlation is computed after every update and is used
in determining when to terminate a trial. Each trial runs for a minimum of 50 iterations
and a maximum of 200, and may be terminated between these limits ifrµ exceeds 0.95, or
if the averagerµ value over the previous 20 iterations differs from the currentrµ value by
less than 0.02. (A limited set of comparison runs in which trials were only terminated after
200 iterations gave similar levels of retrieval performance.)

A useful measure of the system’s overall information capacity is the total amount of
information (about the ensemble ofp patterns) stored in and retrievable from the network.
This can be estimated aspNIc; normalizing by the number of synapses yields the retrievable
information per synapseαIc, henceforth simply denotedI , as in Treves (1990, 1991a).

Network generation

With the exception of the results on finite-size effects and those involving ternary patterns, all
of the results reported herein were obtained from networks possessing the same connectivity
matrix {cij }; additional test runs using different realizations of this matrix yielded similar
statistical results. A single synaptic strength matrix{J c

ij } was generated for eachα value
studied, using a completely different ensemble of patterns at eachα value. Unless stated
otherwise, for each(α, f ) combination studied, twenty trials were run, each using a cue
generated from a different member of the pattern ensemble.

6. Results

For simplicity we shall focus first on results obtained using storage of binary patterns,
leaving a brief presentation of equivalent results from the ternary case until the end of the
section.

Storage capacity

To assess whether an auto-associative network is at all capable of producing quality retrieval
states we consider the ‘best-case scenario’ for retrieval, in which the network is set off in a
state matching a stored pattern and we observe whether the dynamics moves the state away
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Figure 1. Retrieval quality measures as a function of loadingα, given full cue. Data points are
mean values over 20 trials, error bars denote standard deviations. Dashed lines denote analytical
results. (a) Information retrieved per pattern per cell(Ic) versusα. To get a sense of scale,
the mean information (in bits) per cell in a stored pattern is−(a ln a + (1 − a) ln(1 − a))/ ln 2,
which for a = 0.1 equals 0.469. (b) rµ versusα. Note that the analytical curve in (b) is for
x̂µ, not rµ. Although the two data sets are thus not directly comparable, thex̂µ data are still
shown for the purpose of illustration.
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Figure 2. The effect of the network size (N ) on retrieval quality. The individual plots are each
of the form shown in figure 1(a). Error bars have been omitted for clarity; the lines connecting
data points are purely for visual aid. Networks withN = 8192 were used in simulations reported
elsewhere in this paper.

from this point. In the terminology described earlier this corresponds to takingf = 1 in the
internal cueing mode. The results, shown in figure 1, indicate a storage capacity value (αc)
near 0.8, consistent with the theoretical value of 0.79 for the related symmetrically dilute
network.

Both the information retrieval and correlation measures show an increasingly steep
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Figure 3. Frequency distribution ofIc values in the final states for various levels of the loading
α. At eachα level, 100 trials were performed, each using a different stored pattern as the cue.
The bin width is 0.025. (a) α = 0.5, (b) α = 0.7, (c) α = 0.8.

decline asα approachesαc, suggestive of the first-order transition predicted analytically.
Further evidence for this comes from two directions. First, a study of finite size effects
(figure 2) shows that the ‘transition’ becomes more sharply defined as the system size
increases. Second, an examination of the final states shows that the quality of individual
retrieval states does not decay continuously to zero asα → αc. Indeed this is already
suggested by the large standard deviations in figure 1 atα = 0.7, which indicate that the
final states are non-homogeneous. Figure 3 shows the distribution ofIc values found in
the final states forα = 0.5, 0.7, and 0.8, again usingf = 1. In going fromα = 0.5
to 0.7 the frequency distribution shifts slightly to lowerIc values but more importantly
a second peak opens up aroundIc ≈ 0; by α = 0.8 this new peak dominates. Thus,
as α → αc, the number of stored patterns having corresponding retrieval states decreases
sharply towards zero, whilst the information content of those retrieval states which do exist
decreases gradually, remaining at approximately half the value in the stored patterns even
at α ≈ αc†. Note that qualitatively this behaviour is similar to that observed in studies
of the standard Hopfield model, although quantitatively the retrieval states just belowαc

have much higher pattern correlations in the Hopfield model (Amit 1989). For the trials
which fail to reach a retrieval state, scrutiny of the individual cell activitiesVi reveals that
they follow a wandering trajectory over time, suggestive of the chaotic behaviour expected
in networks with asymmetric connections (see, for example, Parisi (1986) and Tirozzi and
Tsodyks (1991)).

Basins of attraction

The results just presented demonstrate that the network possesses stationary states strongly
correlated with the firing patterns embedded in the synaptic matrix. In practice, for the
network to be useful as an auto-associative memory, these high correlation states need not
just to exist but also to be reachable from initial states with low correlation. In other words,
the high correlation stationary states need to be attractors with wide basins of attraction.

To test whether this pattern completion property exists, trials were conducted using

† The analyticalIc values in figure 1(a) are those of the retrieval states, therefore they do not reflect the fact that
for finite N systems the number of retrieval states diminishes asα → αc.
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Figure 4. Retrieval quality measures as a function of loadingα for two cue sizes,f = 0.2 and
f = 1.0 (redrawn from figure 1). Data points are mean values over 20 trials, error bars omitted
for the sake of clarity. (a) Information retrieved per pattern per cell(Ic) versusα. (b) rµ

versusα.
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Figure 5. Retrieval quality measures as a function of the initial cue, forα = 0.5. f is varied
from 0.1 to 1.0, in increments of 0.1. Data points are mean values over 20 trials, error bars
denote standard deviations. Dashed lines denote the hypothetical case in which the network
performs no processing. (a) Information measureIc. (b) Pearson correlation measurerµ.

small cues. Specifically,f was set to 0.2, such that 20% of the elements in the initialV
matched those in a particular pattern, the remaining 80% being assigned randomly. The
results are shown in figure 4, alongside thef = 1 data from figure 1 for comparison. Up
to α = 0.5 retrieval quality is undiminished by the reduction in cue size; beyondα = 0.5
the combination of little cue information and interference in the synaptic weights due to the
many stored patterns renders the evolution of high correlation states unlikely.

From the data in figure 4(a) it is straightforward to compute values ofI (α). For the
‘best-case’ scenario off = 1, I (α) reaches a maximal value of 0.19±0.02 bits per synapse
at α = 0.6. It is notable that in the much more realistic case of noisy cues (f = 0.2) the
maximalI (α) value is essentially the same: 0.18± 0.03 bits per synapse, atα = 0.5.
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Figure 5 shows the effect of systematically varying the cue size atα = 0.5. The plateau
of good retrieval indicates that pattern completion† is possible over a wide range of cue
sizes, i.e. there is a wide basin of attraction to the retrieval state. As in the earlier case, in
conditions where the mean retrieval quality is poor (here, whenf = 0.1), scrutiny of the
individual states reveals a sharply bimodal distribution, with no states having an intermediate
level of quality (data not shown).

Retrieval with a persistent external cue

Analysis of the fully connected network led to the conclusion that the effect of a persistent
external cue was (not surprisingly) to aid pattern retrieval and raiseαc (Treves 1990).
Simulations with the current model also show these effects whensµ is assigned a positive
value. We follow the approach of Treves and Rolls (1992), and use neuroanatomical data
to select a biologically relevant value forsµ. In their model, the network of CA3 pyramidal
cells in the hippocampus can function as an auto-associative memory, with perforant path
fibres from the entorhinal cortex serving to convey cues during retrieval. Now, data from
the rat (Amaralet al 1990) suggest that a CA3 pyramidal cell has approximately four times
as many dendritic spines innervated by CA3 recurrent collaterals as it does spines from
perforant path fibres. To fixsµ we therefore demand that ifV = ηµ, the contribution tohi

in equation (1) from the recurrents is four times that from the external cue. This leads to
the prescriptionsµ = (1 − a)/4.
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Figure 6. Retrieval quality measures as a function of loadingα, given external cueing. Data
points are mean values over 20 trials, error bars denote standard deviations. Theg values used
are the same as in figure 1, withg = 0.15 for α > 0.8; i.e. they are not optimized for external
cueing. (a) Information retrieved(Ic) versusα. (b) rµ versusα.

Simulation results using this external cueing mode are shown in figure 6. There are two
features to note. Firstly, that the performance is better than with internal cueing, both in
terms of the range ofα values over which some retrieval is possible, and with respect to
the absolute retrieval quality in the range ofα values in which internal cueing shows any
retrieval at all. Secondly, even at highα values both retrieval measures seem to be falling
only gradually, a feature also seen in the standard Hopfield model (Amit 1989).

† Recall is not strictly ‘complete’, in that due to the extensive number of loaded patterns even the best final states
do not exactly match their corresponding pattern.
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Sensitivity to gain parameter

As reported in section 3, it is expected that the gain (g) of the neuronal response function
needs to lie in a certain range for retrieval to occur. It is important to check this, for if the
model required exquisitely fine tuning ofg in order for it to function well, then the model’s
relevance to biological memory would be greatly weakened. In the simulations reported
so far, g was set to the value predicted to maximizeIc for the symmetricC/N = 0.1
network. A limited number of trials were performed to check sensitivity tog, at α = 0.5
(using f = 1 internal cueing). Theoretically, for thisα value,g values in the range 0.1–
0.33 should permit the existence of retrieval states in the symmetric system (D O’Kane,
personal communication). The simulations displayed a sharp onset of retrieval behaviour
at g = 0.12, with Ic peaking atg = 0.2, followed by a steady decrease inIc with g,
falling to effectively zero byg = 0.6†. Thus, as with the storage capacity, analytical results
pertaining to the symmetrically diluteC/N network give a reasonable, though not exact,
guide to the performance of a finite-sized, asymmetrically dilute network.

Retrieval of ternary encoded patterns

It might be argued that the above demonstration of the network’s ability to function as an
associative memory is irrelevant to the question of biological memories, on the grounds that
it assumed a binary distribution of neuronal firing during learning, whereas a continuous
distribution is much more likely. Ternary distributions represent the first step towards more
structured encodings. Furthermore analytical results suggest that they already give a good
estimate of the performance obtainable with continuous patterns (Treves and Rolls 1991).

Figure 7 displays the results obtained when the system is used to retrieve ternary-encoded
patterns of the type described by equation (3). Qualitatively the data trends in figure 7(a) are
similar to those found for binary data (see figure 4(a)); quantitatively they differ, in that the
transition to no retrieval now occurs at a higher loading level (α ≈ 1.2), and the absolute
amount of information retrieved per pattern per cell,Ic, is (for low α) smaller than for
binary patterns, this being despite the fact that the ternary patterns encoded in the synaptic
matrix contain more information than binary ones. Computing the information capacityI

we find that in thef = 1.0 condition it has maximal value 0.139±0.01 atα = 0.8, and for
f = 0.2, maximal value 0.100±0.03 atα = 0.6. These values are considerably lower than
those for binary stored patterns, indicating, at least for the parameter set studied here, that
from an information storage perspective there is nothing to be gained from storing ternary
as opposed to binary patterns. Indeed analytical work suggests that this is the case across
a wide range of pattern sparsity and connectivity levels in networks of threshold-linear
neurons (Treves and Rolls 1991).

Finally, it was noted that the strength of the regulatory termb(x) had a considerable
effect on the retrieval of ternary patterns. In the simulations summarized in figure 7(a), a′,
the key parameter inb(x), was set to 0.05 as this led to activity (〈V 〉) levels close to 0.1,
the value in the stored patterns, and values ofar rising from 0.023 atα = 0.2 to 0.08 at
α = 1.0. Varying the value ofa′ alters the activity, sparsity, and information contained in
the retrieved representation. This is demonstrated in figure 7(b) and 7(c) for networks with
loading levelα = 0.6: allowing the activity of the retrieved representation to rise above that
in the original patterns facilitates slightly higher levels of information recall. The generality
of this effect was not investigated systematically because its magnitude does not appear

† Low 1t values were needed in the simulations with highg to prevent excessive oscillations of the sort discussed
in section 5.
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Figure 7. The quality of information retrieval for ternary stored patterns. To get a sense of
scale, the mean information (in bits) per cell in a pattern prescribed by equation (3) is 0.675 for
a = 0.1. (a) Information retrieved per pattern per cell(Ic) versusα for two cue sizes,f = 0.2
andf = 1.0. Data points are mean values over 20 trials, the error bars follow a pattern similar
to that in figure 1(a) and are omitted for clarity. (b) and (c) are scatterplots of individual trial
results obtained usingf = 1.0 atα = 0.6 with various values of the parametera′ between 0.03
and 0.16.

sufficient to alter the above conclusions about ternary versus binary coding.

7. Discussion

In summary, the pattern retrieval capabilities of a large partially connected network of
formal threshold-linear ‘neurons’ have been investigated in a series of simulation studies.
Low activity random patterns were stored by the covariance rule. The storage capacities
were found to be nearα = 0.8 and 1.2 for binary and ternary patterns respectively. Although
analytical estimates ofαc are not available for the asymmetric dilute network studied here,
the experimental values are close to the estimates ofαc in the tractable case of symmetric
dilution. The experimental transitions had first-order-like characteristics, consistent with the
analysis of the symmetric network which predicts a first-order transition atαc. For binary
stored patterns the retrieval attractors were found to possess wide basins forα values up to
≈ 0.5; e.g. atα = 0.5, initial states carrying on average only 5% of the information in a
stored pattern evolved into final states retrieving on average 75% of the pattern information.
Persistent external stimulation matching one of the binary stored patterns facilitates the
evolution of states having non-zero pattern correlations even atα ≈ 2. However, in this
high-α regime the pattern correlations are fairly low, therefore it is more appropriate to
view the system as performing recognition rather than pattern recall in this case (see, for
example, Amit (1989) for a discussion of recognition/recall in attractor networks).

A major motivation for studying associative memory of low activity patterns in
an asymmetric low-connectivity network is that these are conditions found in both the
neocortex and hippocampus—two brain regions often believed to function, at least partly,
as associative memories. Despite the satisfactory performance of the model in the current
simulations, many other factors need to be examined—analytically where possible, otherwise



Pattern retrieval in threshold-linear associative nets 121

by simulations—to assess whether such a model network can be linked efficiently to suitable
input and output modules. Work in this direction, in the context of the hippocampal system,
has been undertaken (Treves and Rolls 1992).

Much recent work has focussed on the associative memory capabilities of networks of
formal neurons modelled with spiking dynamics, e.g. Amitet al (1990), Gerstner and van
Hemmen (1992), or simulated by compartmental modelling, e.g. Wilson and Bower (1989),
Lansner and Fransén (1992). Models such as these using more realistic dynamics allow one
to study the timescales of retrieval processes. Given the speed with which some aspects
of cortical processing occur (Thorpe and Imbert 1989, Oram and Perrett 1992, Tovée et
al 1993), data on pattern retrieval timescales in models might serve as a stringent test of
the biological feasibility of associative memory models. Recent progress in analysing the
dynamics of a network of spiking neurons described by potential and synaptic conductance
variables has also led to some novel conclusions (Treves 1993). Work is currently underway
on modifying the simulation model reported here to incorporate single-cell dynamics of this
more sophisticated type.
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