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Abstract—Neurophysiological evidence is described, showing that some neurons in the macaque temporal
cortical visual areas have responses that are invariant with respect to the position, size and view of faces
and objects, and that these neurons show rapid processing and rapid learning. A theory is then described
of how such invariant representations may be produced in a hierarchically organized set of visual cortical
areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified
Hebb synaptic modification rule with a short-term memory trace to capture whatever can be captured
at each stage that is invariant about objects as the object changes in retinal position, size, rotation and
view. Simulations are then described which explore the operation of the architecture. The simulations show
that such a processing system can build invariant representations of objects. © 1997 Elsevier Science Ltd.
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1. INTRODUCTION

This paper draws together evidence on how infor-
mation about visual stimuli is represented in the tem-
poral cortical visual areas, and on how representations
that are invariant with respect to the position, size and
even view of objects are formed. The evidence comes

*Present address: Max-Planck Institut fiir biologische
Kybernetik, Spemannstrasse 38, 72076 Tiibingen, Germany.
tAuthor for correspondence. Tel: + 44-(0)1865-271348;
Fax: + 44-(0)1865-310447; E-mail: Edmund.Rolls@psy.

ox.ac.uk.

PRONEU 5172 D

from neurophysiological studies of single neuron
activity in primates. It also comes from closely related
theoretical studies which consider how the represen-
tations may be set up by learning in a multistage
cortical architecture. The neurophysiological evidence
considered comes in part from neural systems involved
in processing information about faces, because with
the large number of neurons devoted to this class of
stimuli, this system has proved amenable to
experimental analysis. However, recent evidence also
described suggests that there may be a similar neural
system that produces invariant representations of
non-face objects (Rolls et al., 1996b).
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2. NEUROPHYSIOLOGY OF THE
TEMPORAL CORTICAL VISUAL AREAS

2.1. Visual Cortical Areas in the Temporal Lobes

Visual pathways project via a number of cortico-
cortical stages from the primary visual cortex until
they reach the temporal lobe visual cortical areas
(Seltzer and Pandya, 1978; Maunsell and Newsome,
1987; Baizer et al., 1991). The inferior temporal visual
cortex, area TE, is divided into a set of subareas, and
in addition there is a set of different areas in the
cortex in the superior temporal sulcus (Seltzer and
Pandya, 1978; Baylis et ai., 1987) (see Fig. 1). Of these
latter areas, TPO receives inputs from temporal,
parietal and occipital cortex; PGa and IPa from
parietal and temporal cortex; and TS and TAa
primarily from auditory areas (Seltzer and Pandya,
1978). There is considerable specialization of function
in these areas (Baylis et al., 1987). For example, areas
TPO, PGa and IPa are multimodal, with neurons
which respond to visual, auditory and/or somatosen-
sory inputs; the inferior temporal gyrus and adjacent
areas (TE3, TE2, TE1, TEa and TEm) are primarily
unimodal visual areas; areas in the cortex in the
anterior and dorsal part of the superior temporal
sulcus (e.g. TPO, IPa and IPg) have neurons
specialized for the analysis of moving visual stimuli;
and neurons responsive primarily to faces are found
more frequently in areas TPO, TEa and TEm (Baylis
et al., 1987), where they comprise approximately 20%
of the visual neurons responsive to stationary stimuli,
in contrast with the other temporal cortical areas in
which they comprise 4-10%. The neurons which
respond to non-face stimuli and the other neurons
that respond to faces often require two or more
simple features to be present in the correct spatial
relationship in order to respond (Perrett et al., 1982;
Tanaka et al., 1990, Tanaka et al., 1991; Rolls er al.,
1994).

2.2. Distributed Encoding of Identity

The neurons described as having responses
selective for faces are selective in that they respond
from two to 20 times more (and statistically
significantly more) to faces than to a wide range of
gratings, simple geometrical stimuli, or complex
three-dimensional objects (see Rolls, 1984, 1992b;
Baylis er al., 1985, 1987). The selectivity of these
neurons for faces has been quantified recently using
information theory. This showed that these neurons
reflected much more information about which (of 20)
face stimuli had been seen (on average 0.4 bits) than
about which (of 20) non-face stimuli had been seen
(on average 0.07 bits) (Tovee and Rolls, 1995).

These neurons thus reflect information not just
that a face has been seen, but about which face has
been seen. They respond differently to different faces.
An important question for understanding brain
computation is whether a particular object (or face)
is represented in the brain by the firing of one or a
few gnostic (or “grandmother” or “‘cardinal™) cells
(Barlow, 1972), or whether instead the firing of a
group or ensemble of cells, each with somewhat
different responsiveness, provides the representation,

as the data indicate for faces (Baylis er al., 1985).
A recent way in which the fineness of tuning of these
neurons to individual faces has been quantified is
by measurement of the sparseness of the represen-
tation, a:

a= (25=1.S rs/S)z/Zs= LS (VE/S)

where r, is the mean firing rate to stimulus s in the set
of § stimuli. The sparseness has a maximum value of
1.0 and a minimum value close to zero (1/S, if a
neuron responded to only one of the S stimuli in a
set of stimuli). [The interpretation of this measure can
be made clear by means of an example. If a neuron
had a binary firing rate distribution, with a high rate
to some stimuli and no response to others, and the
neuron responded to 50% of the stimuli, the
sparseness of its representation would be 0.5 (fully
distributed). If a neuron responded to just 10% of the
stimuli, the sparseness of its representation would be
0.1 (sparse)]. For a sample of these cells for which the
responses were tested to a set of 23 faces and 45
natural scenes, it was found that the sparseness of the
representation of the 68 stimuli had an average for
the set of neurons of 0.65 (Rolls and Tovee, 1995a).
If the spontaneous firing rate was subtracted, then the
“response sparseness” for these neurons was 0.33
(Rolls and Tovee, 1995a). It is suggested that the
utility of this rather distributed encoding within the
class faces is that it may enable the maximum
information about a set of stimuli to be provided by
a population of neurons (subject to a constraint on
the average firing rate of the neurons — see Baddeley
et al., 1997). Such a distributed representation would
be ideal for discrimination, for the maximum
information suitable for comparing fine differences
between different stimuli would be made available
across the population (if 50% were active to each
stimulus). In contrast, it is suggested that more sparse
representations are used in memory systems such as
the hippocampus, because this helps to maximize the
number of different memories that can be stored (see
Rolls and Tovee, 1995a; Treves and Rolls, 1994).
Although this rather distributed representation is
present in the temporal cortical visual areas, it is

Fig. 1. Lateral view of the macaque brain (left) and coronal

section (right) showing the different architectonic areas (e.g.

TEm, TPO) in and bordering the anterior part of the

superior temporal sulcus (STS) of the macaque (see text).

The coronal section is through the temporal lobe 133 mm

P (posterior) to the sphenoid reference (shown on the lateral
view).
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certainly not fully distributed. If the information
provided by a single neuron about each of the stimuli
in a set of stimuli is calculated, then it is found that
the amount of information about individual stimuli
can be as high as 1.5-2 bits for some stimuli (usually
those which elicit the highest firing rate), and may
approach zero for the stimuli in the set which produce
responses that are close to the mean response of the
neuron to the stimuli (Rolls er al., 1997). The
advantages of this type of sparse distributed
representation for cognitive processing include
generalization to similar stimuli (in the Hamming
distance sense, see Rolls and Treves, 1997), graceful
degradation (fault tolerance), and some locality to the
representation, so that some single neurons which
receive inputs from such a representation can obtain
sufficient information without requiring an enormous
fan in, that is number of synapses (Rolls et al.,
1996a). (The number of synapses per neuron in the
cerebral cortex is in the order of 5000, and only a
proportion of these inputs will be active in any one
20 msec period.)

This information-theoretic approach has focused
on how visual information about what is being
looked at in the world is represented by the activity
of individual neurons. How does the process scale
with more neurons than one? Evidence recently has
been obtained that the information available about
which visual stimulus (which of 20 equiprobable
faces) had been shown increases linearly with the
number of neurons in the sample (Rolls er al., 1996a;
Abbott et al., 1996). Because information is a
logarithmic measure, this indicates that the number

- of stimuli encoded rises approximately exponentially,
as the number of cells in the sample increases. The
consequence of this is that large numbers of stimuli,
and fine discriminations between them, can be
represented without having to measure the activity of
an enormous number of neurons. For example, the
results of the experiments of Rolls et al., 1996a)
indicate that the activity of 15 neurons would be able
to encode 192 face stimuli (at 50% accuracy), of 20
neurons 768 stimuli, of 25 neurons 3072 stimuli, of 30
neurons 12288 stimuli, and of 35 neurons 49152
stimuli (Abbott ez al., 1996; the values are for an
optimal decoding case). This means that it is now
possible to read the code about face identity from the
end of this part of the visual system. By measuring the
firing rates of relatively small numbers (tens) of
neurons, we know which (of potentially hundreds or
thousands) of visual stimuli are being looked at by
the monkey. It is of interest that much information
is available from the firing rates of an ensemble of
neurons, with no account being taken of the relative
time of firing of the spikes in the different neurons (cf
Engel et al., 1992).

2.3. A Neuronal Representation of Faces and
Objects Showing Invariance

One of the major problems which must be solved
by a visual system used for object recognition is the
building of a representation of visual information
which allows recognition to occur relatively indepen-
dently of size, contrast, spatial frequency, position on
the retina, and angle of view, etc. We have shown that

many of the neurons whose responses reflect face
identity have responses that are relatively invariant
with respect to size and contrast (Rolls and Baylis,
1986); spatial frequency (Rolls ef al., 1985, Rolls
et al., 1987); and retinal translation, i.e. position in
the visual field (Tovee ef al., 1994; cf earlier work by
Gross, 1973, Gross et al., 1985). Some of these
neurons even have relatively view-invariant re-
sponses, responding to different views of the same
face but not of other faces (Hasselmo et al., 1989a).
It is clearly important that invariance in the visual
system is made explicit in the neuronal responses, for
this simplifies greatly the output of the visual system
to memory systems such as the hippocampus and
amygdala, which can then remember or form
associations about objects. The function of these
memory systems would be almost impossible if there
were no consistent output from the visual system
about objects (including faces), for then the memory
systems would need to learn about all possible sizes,
positions etc of each object, and there would be no
easy generalization from one size or position of an
object to that object when seen with another retinal
size or position.

Although the neurons just described have view-in-
variant responses, there is another population of
face-selective neurons, found particularly in the
cortex in the superior temporal sulcus, which tends to
have view-dependent responses (Perrett et al., 1985a;
Hasselmo et al., 1989b). Some of these neurons have
responses which reflect the facial expression but not
the facial identity of the stimulus (Hasselmo et al.,
1989a). These neurons could be useful in providing
information of potential use in social interactions
(Rolls, 1984, 1990, 1992a; Perrett et al., 1985b).
Damage to this population and to brain areas to
which these neurons project may contribute to the
deficits in social and emotional behaviour produced
by temporal or ventral frontal lobe damage (see
Rolls, 1984,1990, 1991, 1992, 1995a, 1996b; Leonard
et al., 1985; Hornak et al., 1996).

To investigate whether view-invariant represen-
tations of objects are also encoded by some neurons
in the inferior temporal cortex of the rhesus macaque,
the activity of single neurons was recorded while
monkeys were shown very different views of 10
objects (Rolls er al., 1996b). The stimuli were
presented for 0.5 sec on a colour video monitor while
the monkey performed a visual fixation task. The
stimuli were images of 10 real plastic objects which
had been in the monkey’s cage for several weeks, to
enable him to build view invariant representations of
the objects. Control stimuli were views of objects
which had never been seen as real objects. The
neurons analysed were in the TE cortex in and close
to the ventral lip of the anterior part of the superior
temporal sulcus. Many neurons were found that
responded to some views of some objects. However,
for a smaller number of neurons, the responses
occurred only to a subset of the objects, irrespective
of the viewing angle. These neurons thus conveyed
information about which object has been seen,
independently of view, as confirmed by information
theoretic analysis of the neuronal responses. Each
neuron did not, in general, respond to only one
object, but instead responded to a subset of the
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objects. Thus, they showed ensemble, sparse-dis-
tributed, encoding. The information available about
which object was seen increased approximately
linearly with the number of neurons in the ensemble.
These experiments provide preliminary evidence that
there is a view-invariant representation of objects, as
well as faces, in the primate temporal cortical visual
areas.

Until now, research on translation invariance has
considered the case in which there is only one object
in the visual field. The question then arises of how the
visual system operates in a cluttered environment. Do
all objects that can activate an inferior temporal
neuron do so whenever they are anywhere within the
large receptive fields of inferior temporal cortex
neurons? If so, the output of the visual system might
be confusing for structures which receive inputs from
the temporal cortical visual areas. To investigate this
we measured the responses of inferior temporal
cortical neurons with face-selective responses in
rhesus macaques performing a visual fixation task.
We found that the response of neurons to an effective
face centred 8.5° from the fovea was decreased to
71% if an ineffective face stimulus for that cell was
present at the fovea. If an ineffective stimulus for a
cell is introduced parafoveally when an effective
stimulus is being fixated, then there was a similar
reduction in the responses of neurons. More
concretely, the mean firing rate across all cells to a
fixated effective face with a non-effective face in the
periphery was 34 spikes/sec. On the other hand, the
average response to a fixated non-effective face with
an effective face in the periphery was 22 spikes/sec.
(These firing rates reflected the fact that in this
population of neurons, the mean response for an
effective face was 49 spikes/sec with the face at the
fovea, and 35 spikes/sec with the face 8.5° from the
fovea.) Thus, these cells gave a reliable output about
which stimulus is actually present at the fovea, in that
their response was larger to a fixated effective face
than to a fixated non-effective face, even when there
are other parafoveal stimuli ineffective or effective for
the cell (Rolls and Tovee, 1995b). Thus, the cell
provides information biased towards what is present
at the fovea, and not equally about what is present
anywhere in the visual field. This makes the interface
to action simpler, in that what is at the fovea can be
interpreted (e.g. by an associative memory) partly
independently of the surroundings, and choices and
actions can be directed if appropriate to what is at the
fovea (cf Ballard, 1993). These findings are a step
towards understanding how the visual system
functions in a normal environment.

2.4. Learning of New Representations in the
Temporal Cortical Visual Areas

Given the fundamental importance of providing an
ensemble-encoded representation of faces and objects
which nevertheless has quite finely tuned neurons,
experiments have been performed to investigate
whether experience plays a role in determining the
selectivity of single neurons which respond to faces.
The hypothesis being tested was that visual
experience might guide the formation of the

responsiveness of neurons so that they provide an
economical and ensemble-encoded representation of
items actually present in the environment. To test
this, Rolls et a/. (1989) investigated whether the
responses of temporal cortex face-selective neurons
were at all altered by the presentation of new faces
which the monkey had never seen before. It might be,
e.g., that the population would make small
adjustments in the responsiveness of its individual
neurons, so that neurons would acquire tuning
properties which would enable the population as a
whole to discriminate between the faces actually seen.
Thus, they investigated whether when a set of totally
novel faces was introduced, the responses of these
neurons were fixed and stable from the first
presentation, or instead whether there was some
adjustment of responsiveness over repeated presenta-
tions of the new faces. Firstly, it was shown for each
neuron tested that its responses were stable over 5-15
repetitions of a set of familiar faces. Then a set of new
faces was shown in random order (with 1 sec for each
presentation), and the set was repeated with a new
random order over many iterations. Some of the
neurons studied in this way altered the relative degree
to which they responded to the different members of
the set of novel faces over the first few (from one to
two) presentations of the set (Rolls et /., 1989). If,
in a different experiment, a single novel face was
introduced when the responses of a neuron to a set
of familiar faces was being recorded, it was found
that the responses to the set of familiar faces were not
disrupted, while the responses to the novel face
became stable within a few presentations. Thus, there
is now some evidence from these experiments that the
response properties of neurons in the temporal lobe
visual cortex are modified by experience, and that the
modification is such that when novel faces are shown,
the relative responses of individual neurons to the
new faces alter (Rolls ez al., 1989). It is suggested that
alteration of the tuning of individual neurons in this
way results in a good discrimination over the
population as a whole of the faces known to the
monkey. This evidence is consistent with the
categorization being performed by self-organizing
competitive neuronal networks, as described below
and elsewhere (Rolls, 1989a, 1989b, 1989¢; Rolls and
Treves, 1997).

Further evidence that these neurons can learn new
representations very rapidly comes from an exper-
iment in which binarized black and white images of
faces which blended with the background were used.
These did not activate face-selective neurons. Full
grey-scale images of the same photographs were then
shown for 10 0.5 sec presentations. It was found in a
number of cases, if the neuron happened to be
responsive to the face, that when the binarized
version of the same face was shown next, the neurons
responded to it (Rolls ez al., 1993; Tovee et al., 1996).
This is a direct parallel to the same phenomenon
which is observed psychophysically, and provides
dramatic evidence that these neurons are influenced
by only a very few seconds (in this case 5 sec) of
experience with a visual stimulus.

Such rapid learning of representations of new
objects, which occurs in humans in a few seconds,
appears to be a major type of learning in which the
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temporal cortical areas are involved, Ways in which
this learning could occur are considered below.

It is also the case that there is a much shorter-term
form of memory in which some of these neurons are
involved, for whether a particular visual stimulus
(such as a face) has been seen recently, in that some
of these neurons respond differently to recently seen
stimuli in short-term visual memory tasks (Baylis and
Rolls, 1987; Miller and Desimone, 1994). A tendency
of some temporal cortical neurons to associate
together visual stimuli when they have been shown
over many repetitions separated by several seconds
also has been described by Miyashita and Chang
(1988); see also Miyashita (1993). In addition,
Logothetis ef al. (1994) using extensive training (600
training trials) showed that neurons could alter their
responses to different views of computer-generated
objects.

2.5. The Speed of Processing in the Temporal
Cortical Visual Areas

An important constraint on the type of processing
that could be involved in object recognition is
provided by the speed of operation of each cortical
stage invelved in object recognition. There is evidence
that it is very fast, as shown by the following. There
is a whole sequence of visual cortical processing
stages including V1, V2, V4, and the posterior
inferior temporal cortex via which information
reaches the anterior temporal cortical areas. Further,
the response latencies of neurons in V1 are about
40-50 msec, and in the anterior inferior temporal
cortical areas approximately 80-100 msec. This
suggests that each stage may need to perform
processing for only 15-30 msec before it has
performed sufficient processing to start influencing
the next stage. Consistent with this, response latencies
between V1 and the inferior temporal cortex increase
from stage to stage (Thorpe and Imbert, 1989).
Because of the importance of the speed of processing,
it has been investigated quantitatively as follows.

In a first approach, the information available in
short temporal epochs of the responses of temporal
cortical face-selective neurons about which face had
been seen was measured. It was found that if a period
of the firing rate of 50 msec was taken, then this
contained 84.4% of the information available in a
much longer period of 400 msec about which of four
faces had been seen. If the epoch was as little as
20 msec, the information was 65% of that available
from the firing rate in the 400 msec period (Tovee
et al., 1993). These high information yields were
obtained with the short epochs taken near the start
of the neuronal response, e.g. in the post-stimulus
period 100-120 msec. Moreover, it was shown that
the firing rate in short periods taken near the start of
the neuronal response was highly correlated with the
firing rate taken over the whole response period, so
that the information available from a neuron was
stable over the whole response period of the neurons
(Tovee et al., 1993). This finding was extended to the
case of a much larger stimulus set, of 20 faces. Again,
it was found that the information available in short
(e.g. 50 msec) epochs was a considerable proportion
{e.g. 65%) of that available in a 400 msec long firing

rate analysis period (Tovee and Rolls, 1995). These
investigations thus showed that there was consider-
able information about which stimulus had been seen
in short time epochs near the start of the response of
temporal cortex neurons.

The next approach was to address the issue of the
length of the period for which a cortical area must be
active to mediate object recognition. This approach
used a visual backward masking paradigm. In this
paradigm there is a brief presentation of a test
stimulus which is rapidly followed (within 1-
100 msec) by the presentation of a second stimulus
(the mask), which impairs or masks the perception of
the test stimulus. This paradigm used psychophysi-
cally leaves unanswered for how long visual neurons
actually fire under the masking condition at which the
subject can just identify an object. Although there has
been a great deal of psychophysical investigation with
the visual masking paradigm (Turvey, 1973; Breit-
meyer, 1980; Humphreys and Bruce, 1989), there is
very little direct evidence on the effects of visual
masking on neuronal activity. For example, it is
possible that if a neuron is well tuned to one class of
stimulus, such as faces, that a pattern mask which
does not activate the neuron, will leave the cell firing
for some time after the onset of the pattern mask. In
order to obtain direct neurophysiological evidence on
the effects of backward masking on neuronal activity,
we analysed the effects of backward masking with a
pattern mask on the responses of single neurons to
faces (Rolls and Tovee, 1994). This was performed to
clarify both what happens with visual backward
masking, and to show how long neurons may respond
in a cortical area when perception and identification
are just possible. When there was no mask the cell
responded to a 16 msec presentation of the test
stimulus for 200-300 msec, far longer than the
presentation time. It is suggested that this reflects the
operation of a short-term memory system im-
plemented in cortical circuitry (e.g. by associatively
modifiable connections between nearby pyramidal
cells), the potential importance of which in providing
a memory trace to guide learning is considered below.
If the mask was a stimulus which did not stimulate
the cell (either a non-face pattern mask consisting of
black and white letters N and O, or a face which was
a non-effective stimulus for that cell), then as the
interval between the onset of the test stimulus and the
onset of the mask stimulus (the stimulus onset
asynchrony, SOA) was reduced, the length of time for
which the cell fired in response to the test stimulus
was reduced. This reflected an abrupt interruption of
neuronal activity produced by the effective face
stimulus. When the SOA was 20 msec, face-selective
neurons in the inferior temporal cortex of macaques
responded for a period of 20-30 msec before their
firing was interrupted by the mask (Rolls and Tovee,
1994). (Comparable results also have been reported
for neurons responding to non-face visual stimuli by
Kovacs et al., 1995). We went on to show that under
these conditions (a test-mask stimulus onset asyn-
chrony of 20 msec), human observers looking at the
same displays could just identify which of six faces
was shown (Rolls et al., 1994).

These results provide evidence that a cortical area
can perform the computation necessary for the
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recognition of a visual stimulus in 20-30 msec, and
provide a fundamental constraint which must be
accounted for in any theory of cortical computation.
The results emphasize just how rapidly cortical
circuitry can operate. This rapidity of operation has
obvious adaptive value, and allows the rapid
behavioural responses to the faces and face
expressions of different individuals which are a
feature of primate social and emotional behaviour.
Moreover, although this speed of operation does
seem fast for a network with recurrent connections
(mediated by e.g. recurrent collateral or inhibitory
interneurons), recent analyses of networks with
analog membranes which integrate inputs, and with
spontaneously active neurons, show that such
networks can settle very rapidly (Treves, 1993;
Simmen et al., 1996).

These experiments also have implications for visual
processing in relation to top-down processing. The
evidence just described indicates that visual recog-
nition can occur (measured by the subjects saying
which face they saw) with largely feed-forward
processing. There is not time in the experiments
described for visual information to pass from V1 to
V2 to V4 and thus to posterior and then anterior
inferior temporal cortex, and back again all the way
to VI, before VI has started to process the second
visual input, that is to have its processing of the first
visual stimulus cut off by the mask.

2.6. Possible Computational Mechanisms in the
Visual Cortex for Learning Invariant
Representations

The neurophysiological findings described above,
and wider considerations on the possible compu-
tational properties of the cerebral cortex (Rolls,
1989a, 1989, 1992b, 1994), lead to the following
outline working hypotheses on object recognition by
visual cortical mechanisms (Rolls, 1992b, 1994,
1995b). The principles underlying the processing of
faces and other objects may be similar, but more
neurons may become allocated to represent different
aspects of faces because of the need to recognize the
faces of many different individuals, i.e. to identify
many individuals within the category faces.

Cortical visual processing for object recognition is
considered to be organized as a set of hierarchically
connected cortical regions consisting at least of V1,
V2, V4, posterior inferior temporal cortex (TEO),
inferior temporal cortex (e.g. TE3, TEa and TEm),
and anterior temporal cortical areas (e.g. TE2 and
TEl). (This stream of processing has many connec-
tions with a set of cortical areas in the anterior part
of the superior temporal sulcus, including area TPO.)
There is convergence from each small part of a region
to the succeeding region (or layer in the hierarchy) in
such a way that the receptive field sizes of neurons
(e.g. 1° near the fovea in V1) become larger by a
factor of approximately 2.5 with each succeeding
stage (and the typical parafoveal receptive field sizes
found would not be inconsistent with the calculated
approximations of e.g. 8° in V4, 20° in TEO and 50°
in inferior temporal cortex; Boussaoud et al., 1991)
(see Fig. 2). Such zones of convergence would overlap
continuously with each other (see Fig. 2). This

50 TE view independence
on
g A 1t
I 20 TEO view dependent
[ \ configuration sensitive
% 8.0 V4 combinations of features
i
e A L)
‘a 32 V2 larger receptive fields
RN
O
& 13 4 1t
\
LGN
0 1.3 3280 20 50
Eccentricity / deg

Fig. 2. Schematic diagram showing convergence achieved
by the forward projections in the visual system, and the
types of representation that may be built by competitive
networks operating at each stage of the system from the
primary visual cortex (V1) to the inferior temporal visual
cortex (area TE) (see text). Area TEO forms the posterior
inferior temporal cortex. The receptive fields in the inferior
temporal visual cortex (e.g. in the TE areas) cross the
vertical midline (not shown). Abbreviation: LGN, lateral
geniculate nucleus.

connectivity would be part of the architecture by
which translation invariant representations are
computed. Each layer is considered to act partly as
a set of local self-organizing competitive neuronal
networks with overlapping inputs. (The region within
which competition would be implemented would
depend on the spatial properties of inhibitory
interneurons, and might operate over distances of
1-2 mm in the cortex.) These competitive nets
operate by a single set of forward inputs leading to
(typically non-linear, e.g. sigmoid) activation of
output neurons; of competition between the output
neurons mediated by a set of feedback inhibitory
interneurons which receive from many of the
principal (in the cortex, pyramidal) cells in the net
and project back (via inhibitory interneurons) to
many of the principal cells which serves to decrease
the firing rates of the less active neurons relative to
the rates of the more active neurons; and then of
synaptic modification by a modified Hebb rule, such
that synapses to strongly activated output neurons
from active input axons strengthen, and from inactive
input axons weaken (see Rolls, 1989¢; Rolls and
Treves, 1997). (A biologically plausible form of this
learning rule that operates well in such networks is

owy = kyi(x; — wy)

where k is a learning rate constant, x; is the jth input
to the ith neuron, y; is the output of the ith neuron,
and w; is the jth weight on the ith neuron; see Rolls,
1989a, 1989b, 1989c; Rolls and Treves, 1997). Such
competitive networks operate to detect correlations
between the activity of the input neurons, and to
allocate output neurons to respond to each cluster of
such correlated inputs. Thus, these networks act as
categorizers. In relation to visual information
processing, they would remove redundancy from the
input representation, and would develop low entropy
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representations of the information (cf Barlow, 1985;
Barlow er al., 1989). Such competitive nets are
biologically plausible, in that they utilize Hebb-
moedifiable forward excitatory connections, with
competitive inhibition mediated by cortical inhibitory
neurons. The competitive scheme suggested would
not result in the formation of “winner-take-all” or
“grandmother” cells, but would instead result in a
small ensemble of active neurons representing each
input (Rolls, 1989a, 1989b, 1989¢). The scheme has
the advantages that the output neurons learn better
to distribute themselves between the input patterns
(cf Bennett, 1990), and that the sparse distributed
representations formed have utility in maximizing the
number of memories that can be stored when,
towards the end of the visual system, the visual
representation of objects is interfaced to associative
memory (Rolls, 1989a, 1989b; Rolls and Treves,
1990). In that each neuron has graded responses
centred about an optimal input, the proposal has
some of the advantages with respect to hypersurface
reconstruction described by Poggio and Girosi,
1990b). However, the system proposed learns
differently, in that instead of wusing perhaps
non-biologically plausible algorithms to locate
optimally the centres of the receptive fields of the
neurons, the neurons use graded competition to
spread themselves throughout the input space,
depending on the statistics of the inputs received, and
perhaps with some guidance from Backprojections
(see Rolls, 1989a, 1989b). The finite width of the
response region of each neuron which tapers from a
maximum at the centre is important for enabling the
system to generalize smoothly from the examples
with which it has learned (cf Poggio and Girosi,
1990a, 1990b), to help the system to respond, e.g.
with the correct invariances as described below.
Translation invariance would be computed in such
a system by utilizing competitive learning to detect
regularities in inputs when real objects are translated
in the physical world. The hypothesis is that because
objects have continuous properties in space and time
in the world, an object at one place on the retina
might activate feature analysers at the next stage of
cortical processing, and when the object was
translated to a nearby position, because this would
occur in a short period (e.g. 0.5 sec), the membrane
of the post-synaptic neuron would still be in its
“Hebb-modifiable” state (caused e.g. by calcium
entry as a result of the voltage dependent activation
of NMDA receptors), and the presynaptic afferents
activated with the object in its new position would
thus become strengthened on the still-activated
postsynaptic neuron. It is suggested that the short
temporal window (e.g. 0.5 sec) of Hebb-modifiability
helps neurons to learn the statistics of objects moving
in the physical world, and at the same time to form
different representations of different feature combi-
nations or objects, as these are physically discontinu-
ous and present less regular correlations to the visual
system. Foldiak (1991) has proposed computing an
average activation of the postsynaptic neuron to
assist with the same problem. One idea here is that
the temporal properties of the biologically im-
plemented learning mechanism are such that it is well
suited to detecting the relevant continuities in the

world of real objects. Another suggestion is that a
memory trace for what has been seen in the last
300 msec appears to be implemented by a mechanism
as simple as continued firing of inferior temporal
neurons after the stimulus has disappeared, as was
found in the masking experiments described above
(see also Rolls and Tovee, 1994; Rolls et al., 1994).
This would enable pairwise association of successive
images of the same object. Rolls (1992b, 1994, 1995b)
also has suggested that other invariances, e.g. size,
spatial frequency and rotation invariance, could be
learned by a comparable process. (Early processing in
V1 which enables different neurons to represent
inputs at different spatial scales would allow
combinations of the outputs of such neurons to be
formed at later stages. Scale invariance would then
result from detecting at a later stage which neurons
are almost conjunctively active as the size of an object
alters.) It is suggested that this process takes place at
each stage of the multiple-layer cortical processing
hierarchy, so that invariances are learned first over
small regions of space, and then over successively
larger regions. This limits the size of the connection
space within which correlations must be sought.
Increasing complexity of representations could also
be built in such a multiple layer hierarchy by similar
mechanisms. At each stage or layer the self-organiz-
ing competitive nets would result in combinations of
inputs becoming the effective stimuli for neurons. In
order to avoid the combinatorial explosion, it is
proposed, following Feldman (1985), that low-order
combinations of inputs would be what is learned by
each neuron. (Each input would not be represented
by activity in a single input axon, but instead by
activity in a small set of active input axons.) Evidence
consistent with this suggestion that neurons are
responding to combinations of a few variables
represented at the preceding stage of cortical
processing is that some neurons in V2 and V4
respond to end-stopped lines, to tongues flanked by
inhibitory subregions, or to combinations of colours
(see references cited by Rolls, 1991); in posterior
inferior temporal cortex to stimuli which may require
two or more simple features to be present (Tanaka
et al., 1990); and in the temporal cortical face
processing areas to images that require the presence
of several features in a face (such as eyes, hair and
mouth) in order to respond (see above and Yamane
et al., 1988). (Precursor cells to face-responsive
neurons might, it is suggested, respond to combi-
nations of the outputs of the neurons in V1 that are
activated by faces, and might be found in areas such
as V4. It is an important part of this suggestion that
some local spatial information would be inherent in
the features which were being combined. For
example, cells might not respond to the combination
of an edge and a small circle unless they were in the
correct spatial relation to each other. [This 1s, in fact,
consistent with the data of Tanaka et al. (1990) and
with our data on face neurons, in that some face
neurons require the face features to be in the correct
spatial configuration, and not jumbled; Rolls ef al.
(1994).] The local spatial information in the features
being combined would ensure that the representation
at the next level would contain some information
about the (local spatial) arrangement of features.
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Further low-order combinations of such neurons at
the next stage would include sufficient local spatial
information so that an arbitrary spatial arrangement
of the same features would not activate the same
neuron, and this is the proposed, and limited,
solution which this mechanism would provide for the
feature binding problem (cf von der Malsburg, 1990).
By this stage of processing, a view-dependent
representation of objects suitable for view-dependent
processes such as behavioural responses to face
expression and gesture would be available.

It is suggested that view-independent represen-
tations could be formed by the same type of
computation, operating to combine a limited set of
views of objects. The plausibility of providing
view-independent recognition of objects by combin-
ing a set of different views of objects has been
proposed by a number of investigators (Koenderink
and van Doorn, 1979; Poggio and Edelman, 1990;
Logothetis er al., 1994). Consistent with the
suggestion that the view-independent representations
are formed by combining view-dependent represen-
tations in the primate visual system, is the fact that
in the temporal cortical areas, neurons with
view-independent representations of faces are present
in the same cortical areas as neurons with
view-dependent representations (from which the
view-independent neurons could receive inputs)
- (Hasselmo et al., 1989a; Perrett et al., 1987). This
solution to ‘‘object-based” representations is very
different from that traditionally proposed for
artificial vision systems, in which the relative
coordinates in three-dimensional space of the
different features of objects are stored in a database,
and general-purpose algorithms operate on these to
perform transforms such as translation, rotation, and
scale change in three-dimensional space (e.g. Marr,
1982). In the present, much more limited but more
biologically plausible scheme, the representation
would be suitable for recognition of an object, and
for linking associative memories to objects, but would
be less good for making actions in three-dimensional
space to particular parts of, or inside, objects, as the
three-dimensional coordinates of each part of the
object would not be explicitly available. Tt is
proposed, therefore, that visual fixation is used to
locate in foveal vision part of an object to which
movements must be made, and that local disparity
and other measurements of depth then provide
sufficient information for the motor system to make
actions relative to the small part of space in which a
local, view-dependent, representation of depth would
be provided (cf Ballard, 1990).

The computational processes proposed above
operate by an unsupervised learning mechanism,
which utilizes regularities in the physical environment
to enable invariant representations to be built. In
some cases, it may be advantageous to utilize some
form of mild teaching input to the visual system, to
enable it to learn for example that rather similar
visual inputs have very different consequences in the
world, so that different representations of them
should be built. In other cases, it might be helpful to
bring representations together, if they have identical
consequences, in order to use storage capacity
efficiently. It is proposed elsewhere (Rolls, 1989a,

1989b) that the Backprojections from each adjacent
cortical region in the hierarchy (and from the
amygdala and hippocampus to higher regions of the
visual system) play such a role by providing guidance
to the competitive networks suggested above to be
important in each cortical area. This guidance, and
also the capability for recall, are it is suggested
implemented by Hebb-modifiable connections from
the backprojecting neurons to the principal (pyrami-
dal) neurons of the competitive networks in the
preceding stages (Rolls, 198%9a, 1989b; Rolls and
Treves, 1997).

The computational processes outlined above use
distributed coding with relatively finely tuned
neurons with a graded response region centred about
an optimal response achieved when the input
stimulus matches the synaptic weight vector on a
neuron. The distributed encoding would help to limit
the combinatorial explosion, to keep the number of
neurons within the biological range. The graded
response region would be crucial in enabling the
system to generalize correctly to solve e.g. the
invariances. However, such a system would need
many neurons, each with considerable learning
capacity, to solve visual perception in this way. This
is fully consistent with the large number of neurons
in the visual system, and with the large number of,
probably modifiable, synapses on each neuron (e.g.
5000). Further, the fact that many neurons are tuned
in different ways to faces is consistent with the fact
that in such a computational system, many neurons
would need to be sensitive (in different ways) to faces,
in order to allow recognition of many individual faces
when all share a number of common properties.

3. A NETWORK MODEL OF INVARIANT
VISUAL OBJECT RECOGNITION

To test and clarify the hypotheses just described
about how the visual system may operate to learn

Layer 2

Layer 1

Fig. 3. Stylized image of the VisNet four-layer network.

Convergence through the hierarchical network is designed to

provide fourth layer neurons with information from across
the entire input retina.
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Fig. 4. Local lateral inhibition is implemented between nearby cells in a layer using this type of filter.

For a given cell, the lateral inhibition is calculated based on the activity of nearby cells at distances away

indexed by a and . The parameters ¢ and ¢ are variables used to modify the amount and extent of
inhibition, respectively.

invariant object recognition, Wallis and Rolls
developed a simulation which implements many of
the ideas just described, and is consistent with and
based on much of the neurophysiology summarized
above. The network simulated, visnet, can perform
object, including face, recognition in a biologically
plausible way, and after training shows for example
translation and view invariance (Wallis ef al., 1993).
The architecture and operation of this neural network
are described next, for the simulation helps to define
and test some of the hypotheses presented in Section
2 on how the cerebral cortex could perform invariant
object recognition. We note that the most crucial part
of the proposal is the use of the trace learning rule,
described in Section 3.2.

3.1. VisNet Architecture
3.1.1. Connectivity

In the four-layer network, the successive layers
correspond approximately to V2, V4, the posterior
temporal cortex, and the anterior temporal cortex.
The network is designed as a series of hierarchical,
convergent, competitive networks. The network is
constructed such that the convergence of information
from the most disparate parts of the network’s input

*As neurons at the edge of the network would otherwise
have fewer inputs the closer they are to the edge, in the
actual network, simulated edge effects were precluded by
wrapping the network into a toroid. This was performed by
arranging the connections so that the top of the network was
wrapped to the bottom, and the left to the right. This
wrapping happens at all four layers of the network, and in
the way an image on the “retina” is mapped to the input
filters. This solution has the advantage of making all of the
boundaries effectively invisible to the network. (This
procedure does not itself introduce problems into evaluation
of the network for the problems set, as many of the critical
comparisons in VisNet involve comparisons between a
network with the same architecture trained with the trace
rule, or with the Hebb rule, or not trained at all, as described
below.) In the real brain, such edge effects would be
'smoothed naturally by the transition of the locus of cellular
input from the fovea to the lower acuity periphery of the
visual field.

layer can potentially influence firing in a single
neuron in the final layer — see Fig. 3. This
corresponds to the scheme described by many
researchers (e.g. Van Essen ef al., 1992; Rolls, 1992b)
as present in the primate visual system — see Fig, 2.

The forward connections to a cell in one layer are
derived from a topologically related and confined
region of the preceding layer. The choice of whether
a connection between neurons in adjacent layers
exists or not, is based upon a gaussian distribution of
connection probabilities which roll off radially from
the focal point of connections for each neuron. In
practice, a minor extra constraint precludes the
repeated connection of any pair of cells. Each cell
receives 100 connections from a 32 x 32 grid of cells
in the preceding layer, initially with a 67%
probability that a connection comes from within four
cells of the distribution centre — although the
effective radius of convergence increases slightly
through the layers. Figure 3 shows the general
convergent network architecture used. Localization
and limitation of connectivity in the network is
intended to mimic cortical connectivity, partially
because of the clear retention of retinal topology
through regions of visual cortex. This architecture
also encourages the gradual combination of features
from layer to layer which has relevance to the binding
problem, as described below*.

3.1.2. Calculation of Neuronal Firing

The activation & of each neuron in the plane of
32 x 32 neurons in each layer was calculated in the
conventional way as the synaptically weighted sum of
the input firings connected to each neuron,

h = Zx;w, (1)

where x; is the firing rate of the jth input through the
Jjth synaptic weight w; to the neuron, and the sum is
over all the inputs (indexed by j) connected to a
neuron from the neurons in the preceding layer.
The next two steps implement short-range lateral
inhibition between the neurons (performed in order
to allow the neurons within a neighbourhood to
reflect the strongest spatial information within that
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neighbourhood, and not to be suppressed by perhaps
more active but distant neurons), and soft compe-
tition. The lateral inhibition helps to ensure that all
parts of the stimuli presented are represented by the
neurons in each layer. In the simulations, a local
inhibitory function was applied to each neuron and
its neighbouring cells, in a similar way to that used
by von der Malsburg (1973). The local lateral
inhibition was simulated via a linear local contrast-
enhancing filter, consisting of a positive central spike
surrounded by a negative gaussian field, the general
shape and formula for which are given in Fig. 4. (As
with the network connectivity, the inhibition acts
toroidally.) The choice of parameters describing the
mask 6 = 10 and ¢ = 1 meant that inhibition was
largely restricted to the nearest neuronal neighbours.
(In recent experiments by Milward and Rolls, using
the sigmoid activation function, the range of the
lateral inhibition was extended by increasing the
value of ¢ to 1.44, and this improved the
performance of VisNet.)) The competition then
applied was not winner-take-all (with only one
neuron left active after the competition), but instead
was graded, to produce a soft competitive network.
This soft competition can be advantageous in the way
neurons are allocated to stimuli (Bennett, 1990) and,
in particular, has the important advantage of leading
to distributed representations. After the competition,
the average neuronal firing was scaled to a constant
average value, to ensure that learning was similar for
every presentation of a stimulus. The second step
was, unless otherwise stated, implemented by raising
the activity r of a neuron after the lateral inhibition
to a power p greater than 1, and then rescaling the
firing rates, to maintain the average firing rate of the
neurons constant, i.e.

y=r (i) @)

where i indexes through the neurons in a layer, and
would be represented in the brain by a shunting effect
of inhibitory feedback neurons. In some simulations,
an alternative activation function, a sigmoid, was
used, as a check that the precise form of the
competition was not crucial.

3.1.3. Network Input

In order that the results of the simulation might be
made particularly relevant to understanding process-
ing in higher cortical visual areas, the inputs to layer
1 come from a separate input layer which provides an
approximation to the encoding found in visual area
1 (V1) of the primate visual system. Several
unsupervised neural models have been successful in
learning to produce cells with the centre-surround
response properties of cells in the lateral geniculate
nucleus, and the oriented edge and bar sensitive
simple cells of V1 (von der Malsburg, 1973; Nass and
Cooper, 1975; Linsker, 1986). VisNet does not
attempt to train the response properties of simple

*We warmly thank Professor R. Watt, of Stirling
University, for assistance with the implementation of this
filter scheme.

cells, but instead starts with a fixed feature extraction
level, as have some other researchers in the field
(Hummel and Biederman, 1992; Buhmann ef al.,
1991; Fukushima, 1980), with the intention of
simulating the more complicated response properties
of cells between V1 and the inferior temporal cortex
IT).

The response characteristics of neurons in the input
layer are therefore provided by a series of spatially
tuned filters with image contrast sensitivities chosen
to accord with the general tuning profiles observed in
the simple cells of V1. Currently, only even-symmet-
ric (bar-detecting) filter shapes are used. The precise
filter shapes were computed by weighting the
difference of two Gaussians by a third orthogonal
Gaussian according to the following:

y
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where fis the filter spatial frequency (four frequencies
over four octaves in the range 0.0625-0.5 pixels '), 8
is the filter orientation (0-135° over four orien-
tations), and p is the sign of the filter, i.e. + 1*. Cells
of layer 1 receive a topologically consistent, localized,
random selection of the filter responses in the input
layer, under the constraint that each cell samples
every filter spatial frequency and receives a constant
number (272 unless otherwise specified) of inputs.
Oriented difference of gaussian filters were chosen in
preference to the often used Gabor filter on the
grounds of their better fit to available neurophysio-
logical data including the zero DC response (Hawken
and Parker, 1987; Wallis, 1994). (Any zero DC filter
can, of course, produce a negative as well as positive
output, which would mean that this simulation of a
simple cell would permit negative as well as positive
firing. In contrast to some other models, the response
of each filter is zero thresholded and the negative
results used to form a separate anti-phase input by
other neurons to the network.) The filter outputs also
are normalized across scales to compensate for the
low frequency bias in the images of natural objects.
Figure 5 shows pictorially the general filter sampling
paradigm.

3.2, The Trace Learning Rule

The learning rule implemented in the simulations
utilizes the spatio-temporal constraints placed upon
the behaviour of “‘real-world” objects to learn about
natural object transformations. By presenting con-
sistent sequences of transforming objects the cells in
the network can learn to respond to the same object
through all of its naturally transformed states, as
described by Foldiak (1991), Rolls (1992b, 1994,
1995b, 1996b) and Wallis (1996b). The learning rule
incorporates a decaying trace of previous cell activity
and is henceforth referred to simply as the “trace”
learning rule. The learning paradigm described here
is intended in principle to enable learning of any of
the transforms tolerated by inferior temporal cortex
neurons (see above).

























































