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Abstract—Real neuronal networks in the brain utilize networks of neurons with graded not binary firing rates. A
theoretical analysis of the operation of autoassociative networks with neurons with graded firing rates has therefore
been developed. The present simulation study was performed in order to investigate the operation of such a network with
values for the asymmetric diluted neuronal connectivity typical of some brain regions such as the hippocampus, which
are outside the range to which the theoretical analysis strictly applies. We report that, in line with theoretical predic-
tions, the amount of information that can be retrieved is relatively independent of the resolution of the stored patterns
(binary, ternary, decimal, or fifty-fold). The implication of this is that if the network stores many graded patterns, which it
can, then the retrieval quality of each of the patterns becomes low. The implications of this trade-off between the number
of patterns stored and the retrieval quality of each pattern when graded firing rates are stored for understanding the
operation of networks in the hippocampus are considered. © 1997 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The presence of recurrent connectivity amongst neurons
in the CA3 subfield region of the hippocampus, along
with the physiological evidence for the existence of
mechanisms of long-term synaptic modification, has
led to the consideration of this part of the brain as an
attractor network, or autoassociative memory (Marr,
1971, Rolls, 1987, 1989a, 1989b, 1989c, 1990a, 1990b,
1990c, 1991; Rolls & O’Mara, 1993, Treves & Rolls,
1991, 1992, 1994, Rolls & O’Mara, 1993; Rolls &
Treves, 1998). The hypothesis developed in this work
is that the CA3 region is part of a system involving the
hippocampus and neocortex that is involved in the for-
mation and retrieval of episodic memories. Retrieval of
recent episodic memories from the hippocampus may be
useful when the neocortex is building more structured,
semantic memories (Treves & Rolls, 1994).
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Systems of large number of neurons acting together in
a dynamically recurrent fashion have been amendable to
analysis using techniques based on forming analogies
with physical systems of large number of interacting
particles. Physicists have long been used to the idea of
looking at the long-term evolution of macroscopic
variables in a system where details of the activity of
individuals are not known. Just such a situation is con-
sidered in the mean field theory of attractor neural nets.
The asymptotic behaviour of an attractor neural net can
be derived analytically for fixed point attractors, and
estimates can be made for the storage capacity of the
net in terms of pattern and information retrieval
(Hopfield, 1982; Amit, 1989).

Since the beginnings of the involvement of statistical
physics in neural network theory, advances have been
made towards biological relevance. One area of interest
has been to consider attractor networks with graded firing
rates, rather than binary firing rates, because it is found
that neurons in the brain have continuously variable
firing rates (e.g. in the visual cortex Rolls and Tovee,
1994; in the primate hippocampus, Rolls and O’Mara,
1993). Hopfield (1984) extended his analysis to fully
connected networks with sigmoid activation functions.
However, the approach from statistical mechanics deals
most naturally with fully connected networks, because
then there is a formal energy minimum; but biologically
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realistic networks typically have diluted connectivity,
and in addition sparse representations. Because the
CA3 network in the hippocampus has a diluted connec-
tivity (approximately 2%), and has a sparse representa-
tion with only a small proportion of the neurons active at
any one time, as well as neurons with continuously vari-
able firing rates, we have developed an analysis applic-
able to these biologically relevant conditions of storage
and retrieval in autoassociative neural networks (Treves,
1990, Treves and Rolls, 1991, 1992).l This has been
possible using for the analysis networks of neurons
with threshold linear activation functions. In these ana-
lyses, the connectivity was either complete, as above, or
had to be assumed to be very diluted.” The biologically
relevant case, however, is that of a moderately (and
asymmetrically) dilutely connected network (2—4% con-
nectivity, see Rolls, 1990a, Treves and Rolls, 1992,
1994). To obtain results closer to this case, it is necessary
to conduct simulation studies. Simmen et al. (Simmen
et al., 1995) have simulated an attractor network with
threshold linear neurons and an asymmetric connectivity
of 20%. The network was able to retrieve stored patterns
with results very close to the capacity predicted analyti-
cally. However, in that paper, only binary and ternary
patterns, not the more biologically plausible more
graded patterns, were considered. The purpose of the
investigation described here is to extend the simulation
results to moderately connected networks with neurons
with graded, not just binary (or ternary), patterns of firing
rates.

It is of considerable interest, theoretically as well as in
the context of the hippocampus, to extend the results to
networks with graded firing rates, for in part of a simula-
tion of the whole hippocampus, Rolls (1995) found with
threshold linear neurons that if the firing rates in CA3
were allowed to be continuously graded, then, relative to
the binary condition, there was a large deterioration in
the retrieval quality of the patterns, as well as some
decrease in the number of patterns that could be stored.
(The retrieval quality was measured by the correlation of
the pattern retrieved using a partial cue to the pattern
which was learned). Rolls (1995) suggested that if the
function of the hippocampus was to store and retrieve
correctly as many memories as possible, as might well
be the case for a structure involved in storing episodic
memories, then it could be advantageous to use relatively
binary encoding of patterns in structures such as CA3,
and to forgo graded firing rates, which though potentially
capable of storing more information per pattern, do so
only when the memory loading (the number of patterns
stored in the network) is low. The specific aim of the
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present investigation was therefore to analyse attractor
networks in which the degree of grading of the encoding
was specifically controlled, and the quality of the
retrieval, as well as the number of patterns for which
some retrieval could be shown, was investigated. Four
different kinds of patterns were investigated: patterns
with two-fold (binary), three-fold (ternary), ten-fold
(decimal), and fifty-fold structure. In addition, also
involving an extension to previous work, we focussed
on the completion of incomplete patterns by the auto-
associative network of (cf Simmen et al., 1995), as com-
pletion of past episodes from remembered fragments
may be an important property of the hippocampus in
memory (Rolls, 1989a, 1989b, 1989c).

2. THE NETWORK

The network can be described under four headings which
correspond to the four stages in which the simulation of
the network operates. The formal specification of the
operation of the network is the same as that of the net-
work analysed by Treves (1990), except where indicated.
Firstly, the patterns that the net is to be trained on are
created from the distributions specified in the theoretical
analysis described by Treves (1990). Secondly, the
weights are set according to a Hebbian covariance rule.
Thirdly, the weight matrix is ablated, that is a proportion
of its elements are probabilistically set to zero, to achieve
an effective degree of recurrent connectivity. Fourthly,
the net undergoes testing with incomplete persistent
external cues until the state has settled into retrieval or
otherwise.

2.1. Pattern Generation

The memory patterns were generated according to
distributions which satisfied the general requirement
that <5 > = <n?> = a(yis the firing rate), i.e.
that the first and second moments of the distribution be
constrained to certain values, setting the sparseness a of
the distribution. The sparseness is defined as:a = <5 > %
< 5% > . The distributions were as follows:
Binary:

Pi=(1-a)s(n)+ad(n—1)

Ternary3:
4 1. a 3
Pi=(1- 50)5(17) +ad(n — E) + 55(71 - E)

10- and 50-fold: The continuous exponential-like
distribution

Pi=(1—2a)5(p)+ Maexp >

!In the rat CA3 region, the sparseness parameter a defined below is
approximately 0.02 (Barnes et al., 1990, Rolls and O’Mara, 1993).

2 Analytical results are also available for intermediate degrees of
dilution, but only with the additional constraint of symmetry in the
connectiions (O’Kane and Treves, unpublished).

3 There are, of course, many possible choices for a distribution P,
which consists of three & functions which satisfy the required constraints
on the moments set out above. We choose the particular form described
next because this has been used in related analytic investigations by
Treves (1990).
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which satisfies the required constraints on the moments,
was evaluated at 10 equispaced values (3 = 70,9 +
1/3,...,m0 + 3) and, respectively, at 50 equispaced values
(m=mn0m0+ 1/15,...,m0 + 49/15) with g = Oand A = 1
adjusted to make sure the discretized distributions also
satisfy the constraints. 8(x) is Dirac’s delta function, and
it allocates to the quiescent state the probability remain-
ing after the probabilities of the different firing levels (all
proportional to a) have been determined. Note that for
10- and 50-fold distributions the weight of the delta
function is augmented by the contribution, at 5, = 0,
of the first discrete firing level.

The simulation allowed the sparseness a of the coding
of the patterns generated to be specified. The issue of
sparseness is important, for it is an important parameter
setting the number of patterns that can be stored in the
network (Treves & Rolls, 1991). The sparseness of the
retrieved patterns was measured, to ensure that the network
was operating in such a way that the sparseness of the
retrieved patterns was close to that of the stored patterns.
The gain factor g in the threshold linear activation function
was a parameter which altered the retrieved sparseness.

2.2. Learning

The learning mechanism is a form of Hebbian covariance
synaptic modification, a one-step application of a simple
rule which takes account of simple pairwise covariance
relationships within each pattern. The exact rule is as
follows. Note that the form of the covariance rule is
commutative with respect to units / and j, therefore
forcing a fully connected net with such a rule to have
symmetric weights.

1 D
Ji= N2 FZ (nf —a)n} —a)

where J;; is the weight between units / and j. o}’ represents
the firing rate of unit i within pattern u. This is a simple
covariance rule, and a represents, along with the sparse-
ness, the mean activation of the net. As noted above, the
sparseness of the representation is a property which is a
characteristic of the neuronal firing in each brain area.

2.3. Connectivity

One of the central aims of this study was to investigate
net performance at moderate levels of diluted connec-
tivity, and thus the weight matrix as prescribed by the
above learning rule was modified. The connectivity
required was interpreted by the program as a probability
that each element of the weight matrix retained its pre-
scribed value; thus with a complementary probability,
each element was ‘ablated’, i.e. set to zero.

This was achieved in one of two ways, depending upon
whether this dilution of connectivity was to be applied
symmetrically or asymmetrically. In the asymmetric
case, each element was simply considered individually.
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In the symmetric case, only one half of the weight matrix,
split by the leading diagonal, was considered. As each
element was probabilistically considered, so its mirror
element across the diagonal was also treated. In this
report, results are given for asymmetric dilution only,
because this is the biologically plausible case. The per-
formance of networks with diluted symmetric connec-
tivity was rather better than the performance with the
asymmetric connectivity described here. This is because
the symmetric case is more likely to produce a stable state.

The total number of units is N, each unit receives on
average C inputs, and p = «C is the number of patterns
stored in the net. The critical loading of the net, when it
fails to operate as a memory, is denoted as «,.

2.4. Testing Recall by the Net

During recall, the activity of each neuron in the network
was asynchronously updated according to a rule which,
by analogy with the theoretical analysis, considered a
local field h; at each unit i consisting of an external
field, internal field, and threshold term, as follows

=Y JV+n S Dt 3 N
(%D 7 N W a

Vjac represents the output of neuron j, and s* represents
the relative strength of pattern u, see below.

The external field (the last term in the above equation)
is equivalent to the clamping, persistent external cue,
which is believed to be provided by the direct perforant
path, afferents into CA3 from entorhinal cortex (Treves
& Rolls, 1992). The ratio between the average number of
perforant path synapses per CA3 cell and that of the
recurrent collaterals is in this model allowed to determine
their relative influence on the firing of CA3 cells.
Anatomical evidence available from the rat suggests
that the ratio of the external input (the retrieval cue) to
the internal recall provided by the recurrent collaterals
should be in the order of 0.25 (see Treves and Rolls,
1992), and we set s* to produce this ratio (for example
when the retrieval cue had a correlation of (.5 with the
originally learned pattern).

The internal field (the first term in the above equation)
is equivalent to the recurrent activation provided by the
recurrent collaterals in CA3. This is implemented
through a standard autoassociation update rule involving
weighted inputs from each of the other units. As
explained above, this is qualified by the connectivity
enforced through zero weights.

The threshold term b is equivalent to the effect of the
inhibitory mechanisms at work in the CA3 system. The
inhibitory mechanism included here is a function of the
mean activity of the entire system, and it is subtractive, of
the form
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FIGURE 1. Recall performance is only weakly dependent on the
value of the gain parameter, g, over a certain range. Twenty trials
were performed at five correlation levels, for each gain value for
binary patterns. The recall performance measure used was an
estimate of the area above the line of zero completion y = x
shown in Figure 3 (see text).
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The value «k was set to 10,000. (At lower values, «, is
artificially low, and at very high values completion was
limited.) We ensured that the retrieval sparseness was
close to 0.1 (which was the sparseness of the stored
patterns), by adjusting 4 to a lower value than a. (If we
had allowed the sparseness of the recalled patterns to
become different from 0.1, then this would have altered
the recall properties of the system being studied. If, as in
the original theory (Treves, 1990), the retrieval sparse-
ness is allowed to decrease, then «, becomes higher. We
focus here on the condition in which the sparseness is
the same during storage and retrieval.) A gain para-
meter which itself depends on the activity in the net is
tantamount to a more realistic inhibitory mechanism,
e.g. divisive inhibition, but as threshold setting is just
a generic operation, it was not investigated in detail
here.

The activation function of the neurons is a threshold
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FIGURE 2. This figure shows the correlation of the final state of the network after recall with the stored pattern, as a function of loading,
for the four levels of pattern resolution studied. The two lines in each graph correspond to two cue levels: the heavy dashed line is for a
cue correlated 0.5-0.55 with the original stored pattern, and the light dashed line is for a cue correlation of 0.9-0.95. The loading, «, is
P/C. Note that here and in the following graphs, the error bars represent the standard deviations.
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FIGURE 3. This figure shows pattern completion across the four pattern types, at a loading of « = 0.3. The abscissa shows the
correlation of the retrieval cue with the stored pattern. The ordinate shows the correlation of the retrieved pattern with the stored pattern.

Each point represents the average of 5 different patterns retrieved.

linear function of the local field %; with a gain factor g, as
described by Treves (1990).

{ g(h— Ty),
V=
0 ,

B> Ty,
h<Ty

The recall of the net was measured by the correlation of
the retrieved pattern with that stored, when incomplete
retrieval cues were used. The performance of the network
was also measured by the information retrievable from
the network in bits per synapse about the set of stored

patterns, as follows
Z Z

where we refer to Treves (1990) for further details.
Briefly, for each element of the retrieved network state
and the corresponding stored pattern, the firing was first
discretized into bins, and then the expression above was
evaluated. In the above, c, is the probability that the

1)

log2

pattern element is in the kth bin of m bins, ¢! is the
probability that the retrieved element is in the /th bin of
n bins, and cf( is the probability that the retrieved element
is in the /th bin, and the pattern element is in the kth bin.
In our implementation of this calculation, due to practical
limitations, we binned both the patterns and network
states into 15 bins. Note that the factor « means that
the result is in bits per synapse, which is proportional
to the total information stored in, and retrievable from,
the whole network.

2.5. Parameters

The network functioned with a set of parameters chosen
to be biologically relevant. Where the parameters are not
in correspondence with measurable quantities, they were
optimized to the values required for the theory to apply
(Treves, 1990). This subsection details some of these
parameters, and the reason for their choice.
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FIGURE 4. This figure shows pattern completion across the four pattern types, at a loading of « = 0.5.

The total number of units in the net was set to 2000 for
the results reported. This represented a compromise
between size, where too small a net might lead to
small-size effects, and available storage space on the
computer. A limited set of further results showed similar
performance for nets with 4000 neurons, and with 1000
neurons the mean results were comparable, but this
decrease in size increased the noisiness of individual runs.

The connectivity was kept at 0.2, that is, 400 connec-
tions per neuron. The sparseness of coding parameter of
the stored patterns a was kept at 0.1.

The gain parameter, equivalent to the gradient of the
linear threshold function producing the output of each
unit from its incoming local field, was tested at a number
of different values, and found to be optimal in the region
of g = 0.5 for binary neurons (see Figure 1). Repeating
the search for other pattern types (3-, 10- and 50-fold),
the parameter was set close to its optimal value for each
type. The actual values of g used were 0.5 for binary
patterns, 0.45 for ternary, and 0.28 for decimal and
fifty-fold patterns.

The loading o was expressed as the ratio P/C, where P
is the number of patterns stored, and C is the number of
connections per neuron, set to 400. The loading was
varied between 0.1 and 1.2 to investigate the maximum
value of the storage capacity o, in terms of patterns, as
well as to investigate the effect of over-loading. Thus the
number of patterns was varied from 40 to 480. The net
was allowed to iterate for a maximum of 30 epochs.

3. RESULTS

Figure 2 shows the (Pearson product-moment) correla-
tion of the final state of the net with the stored pattern that
is being retrieved, as a function of loading. The storage
capacity, defined as the critical value o, = ﬂfg-" is
approximately indicated in Figure 2 by the point where
the correlation of the retrieved pattern with the original is
not better than that of the retrieval cue with the original.
It is clear that retrieval begins to fail at similar loadings
between 0.4 and 0.7 for all the pattern resolutions.
Figure 3 shows the correlation between the final state
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FIGURE 5. This figure shows the information retrieved in bits per synapse, as a function of loading, for the four types of patterns. The two
lines in each graph correspond to two cue levels; the heavy dashed line is for a cue correlation of 0.5-0.55 with the stored patterns; the
light dashed line is for a cue correlation of 0.9-0.95. The loading, «, is P/C.

of the network during retrieval and the stored pattern as a
function of the correlation between the initial retrieval
cue and the stored pattern of which it is a part, at a given
loading of « = 0.3. For each plot, the line y = xis
shown. This represents the line of zero retrieval, where
the cue is effectively reproduced without any pattern
completion. If a point is above this line, completion
has occurred, and the cue presented can be said to have
been within the basin of attraction of the stored pattern.
Where a point is below this line, the final state has
deteriorated even with respect to the cue. Thus these
graphs show pattern completion, and are informative
with respect to both the basins of attraction, and the
issue of retrieval quality. Retrieval quality, which may
be thought of as the extent to which partial cues undergo
completion, producing a retrieved state that has a high
correlation with the stored pattern, is shown to become
worse as the pattern resolution increases from the binary
and ternary cases to the decimal and 50-fold cases. One

can see that the binary and ternary cases allow for good
completion from a quite incomplete cue, thus exhibiting
large basins of attraction. In contrast, the retrieval quality
for the decimal and 50-fold patterns becomes poor.

Figure 4 shows the same type of graphs as Figure 3,
but for a loading of & = 0.5, closer to the theoretical
capacity. The behaviour is consistent with the previous
figure, with in this case even poorer quality of retrieval
with the 10-fold and fifty-fold patterns. Indeed, with 10-
fold and 50-fold pattern resolutions, the retrieved state
was just worse than the retrieval cue itself.

Figures 5, 6 and 7 show the performance of the net-
work measured by the average information stored in the
network by each synapse for different pattern resolutions.
Figure 5 is the information analysis that corresponds to
Figure 2. In all cases, the information per synapse
increases as the number of patterns stored increases,
until some information capacity limit is reached, beyond
which no further information can be retrieved as the
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FIGURE 6. This figure shows information in the final state of the network as a function of the information in the retrieval cue, in bits per

synapse. The loading, «, was 0.3.

number of patterns is increased. An important point here
is that comparable information is stored for all pattern
types, as predicted (Treves, 1990, Treves & Rolls,
1991). Beyond the point where the information per
synapse reaches its maximum, in some cases, as expected
with overloading, the retrieved information actually
deteriorates. The retrieved information is higher with
the cue correlated 0.9 with the stored patterns as com-
pared to the cues correlated 0.5, partly because the
external cue helps to stabilize the firing of the net-
work. To show whether the information in the
retrieved pattern (the final state of the network,
which is what is plotted in Figure 5) is greater than that
in the retrieval cue itself, we show this relation in Figure
6 (for « = 0.3) and Figure 7 (for o = 0.5). Figure 6
(which corresponds to Figure 3) shows that useful
retrieval is achieved by the network for binary and
ternary patterns, but that even at this quite low loading
of 0.3, the information in the final state of the network is

not better than that in the retrieval cue for 10- and 50-fold
patterns. This trend is even greater with a loading « of
0.5, as shown in Figure 7.

Taken together, the results summarized in Figures 24
show the following. o, has been reached by around
0.7, a region which agrees with theoretical estimates
(Treves & Rolls, 1991). (. is taken to be the point in
these figures at which the final state of the network
during retrieval is not better than the retrieval cue
itself.) However, at each loading, the decimal and 50-
fold cases are poor in terms of retrieval quality, with
only little completion found. On the other hand, as
shown in Figure 5, the actual amount of information
retrieved is similar for the different pattern resolutions.
Considering that higher resolution implies more infor-
mation in the stored pattern, there appears to be a
trade-off, set by the total information that can be
retrieved, between retrieval quality and the information
load on each pattern.
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FIGURE 7. This figure shows information in the final state of the network as a function of the information in the retrieval cue, in bits per

synapse. The loading, «, was 0.5.

4. DISCUSSION

The results described here on the storage capacity, that is
the number of patterns that can be stored for a given
number of connections per neuron, are in line with
theoretical analyses which show that «. is largely com-
parable for different pattern types (Treves, 1990, Treves
& Rolls, 1991, Fig. 5a). In more detail, however, the
analyses predict higher capacities for more graded
patterns, provided the sparseness of retrieved patterns
is not constrained. The capacity is in fact maximised
when, with graded patterns, the intermediate firing
levels are thresholded out, producing sparser patterns at
retrieval than the original ones. In the present simula-
tions, instead, the sparseness at retrieval is constrained
by adjusting the thresholds to be similar to that of the
original patterns, and as a result the number of patterns
that can be retrieved is not larger for more graded
patterns, as shown in Figure 2. Moreover, the results
shown in Figure 2 are directly relevant to the biologically

plausible case of moderate connectivity, rather than the
full or very diluted connectivity for which the theoretical
analyses were originally made (see Treves & Rolls,
1991).

The results described here on the decrease in the
quality of the retrieval which occurs with more and
more graded patterns, shown in Figures 3 and 4, provide
a useful quantitative description of what was suggested
to be the case in the hippocampal simulations described
by Rolls (Rolls, 1995). The most straightforward point
that can be made to account for this is the following.
Theoretical analyses, and the results now provided in
Figure 5, show that the total amount of information
that can be stored and retrieved from such a network
(or the amount of information stored per synapse) is
relatively independent of the resolution of the stored
patterns (Treves & Rolls, 1991, Fig. 5; Treves, 1990,
Fig. 2). Given that more information is loaded onto
more graded patterns, this means that the quality of the
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retrieval will decrease with more and more graded
patterns. (Alternatively, the network parameters can be
set to produce somewhat better retrieval quality, but then
«, decreases.) Another way in which this effect can be
understood is in terms of the way in which the threshold
linear neuronal network operates. The optimal capacity
o, is achieved for non-binary patterns when, as
mentioned above, the threshold is set between the inter-
mediate and the strongest activations (unless the sparse-
ness of the retrieved patterns is controlled). This however
means not only that the retrieved patterns end up sparser
than those stored, leading to an apparent increase in o,
but also that the quality of the recall deteriorates. In the
simulations performed by Rolls (1995), the sparseness of
the retrieved patterns was carefully controlled, and the
effect on the quality of retrieval of graded pattern encod-
ings was very apparent. In the present simulations, we
checked that the sparseness of the retrieved patterns was
approximately that of the stored patterns, and this was the
case (indicating that the gain parameter g and the
inhibitory parameters were set as we had intended).

The exact point at which the network performance
became poor as loading was increased was found during
the simulations we performed to depend on a number of
factors. One was the ratio of the external activation of
each neuron. As this was increased beyond about 0.25,
then the final retrieval state of course reflected the
retrieval cue more, and this could lead to an apparent
higher o because the network was being stabilized and
helped by the strong external cue. Conversely, if the
external cue was much less than 0.25, then the external
retrieval cue was insufficient to lead to good retrieval
with this asymmetric diluted connectivity.

The trade-off described here between higher infor-
mation load and poorer retrieval quality, which occurs
with more graded patterns, must be considered when
defining whether binary or graded encoding is more
appropriate in autoassociation networks. In other
words, the potential for loading more information on to
each graded pattern remains unutilizable by these simple
networks. Since neither the number of patterns nor the
total amount of information that can be retrieved increase
significantly with the use of more graded patterns, one
can say that the higher resolution available is just wasted
by the network. In the context of storing as much as
possible about as many recent episodic memories as
possible, in a structure such as the hippocampal CA3
network, there may be even some advantage to using
relatively coarsely graded (almost binary) encoding of
patterns. This will maximize the number of different
memories that can be stored and retrieved correctly.
Moreover, the implications of the results described here
are not limited by the fact that a correlation measure is
more sensitive for graded than for binary patterns, for the
operation of the next stage of processing in the hippo-
campus, the CA1 cells, was found to be limited by the
poor retrieval quality of CA3 in the simulation of the
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hippocampus described by Rolls (1995). The noiseness
or poor predictability of the retrieval described here may
also limit the value of using very graded encodings of
firing rate in other autoassociative memory systems
required to operate at high loading.

One aspect of the patterns of firing of hippocampal
neurons may contribute to the interpretation of their
firing rates as being relatively binary, without a great
range of different firing rates needing to be stored. It is
that in addition to the representation being sparse, so that
the probability that CA3 neurons fire may be low (e.g.
0.02, see Barnes et al., 1990; Rolls and O’Mara, 1993),
the firing rates of hippocampal cells with spatial (place in
rats, or view in monkeys, see Rolls and O’Mara, 1993)
responses tends to be low, with rates in the range 0-10
spikes/s being typical in the rat, and 0—20 spikes/s in the
monkey. Given that the integration time of the bio-
physical neuronal processes involved in synaptic modi-
fication may be in the order of 50 ms, this would mean
that there is insufficient time in such short periods for
accurate measures of firing rate to be reflected in what is
stored, given that only one or two spikes are likely to
occur in such a short period. In contrast, the rates with
which neurons fire are very much faster in cerebral neo-
cortical areas involved in encoding visual stimuli such as
faces (Rolls & Tovee, 1994), and this may be to allow
very rapid information processing to occur (see Rolls,
1994; Rolls & Tovee, 1994). This suggests that the con-
straint in what is thought to be a memory storage system
such as the hippocampus may be towards storing and
retrieving large numbers of different memories, and
large amounts of information, for which sparse patterns,
and low firing rates, may be more appropriate, given the
findings described here. If the constraint were more that
of representing large numbers of patterns, or large amounts
of information, the advantages would be with less sparse-
ness and more graded encodings, which may be utilized
in some neocortical areas (see Rolls & Treves, 1998).

In conclusion, the most important results described
here are that in autoassociative networks with neurons
with graded firing rates the retrieval quality deceases
markedly when the pattern grading is increased from
ternary to 10-fold and 50-fold. The effect was not
found by Simmen et al. (1995), who did not test for
graded patterns greater than ternary. The effect was
observed initially in the simulations of the hippocampus
described by Rolls (1995). The result does have implica-
tions for how autoassociative networks in the brain may
operate.
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