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J. Neurophysiol. 79: 1797-1813, 1998. Hippocampal function was
analyzed by making recordings from hippocampal neuronsin mon-
keys actively walking in the laboratory. ‘‘Spatial view’’ cells,
which respond when the monkey looks at a part of the environment,
were analyzed. To assess quantitatively the information about the
spatial environment represented by these cells, we applied informa-
tion theoretic techniques to their responses. The average informa-
tion provided by these cells about which location the monkey was
looking at was 0.32 bits, and the mean across cells of the maximum
information conveyed about which location was being looked at
was 1.19 bits, measured in a period of 0.5 s. There were 16 loca
tions for this analysis, each being one-quarter of one of the walls
of the room. It a'so was shown that the mean spontaneous rate of
firing of the neurons was 0.1 spikes/s, that the mean firing rate in
the center of the spatial field of the neurons was 13.2 spikes/s,
and that the mean sparseness of the representation measured in a
25-ms period was 0.04 and in a 500-ms time period was 0.19.
(The sparseness is approximately equivalent to the proportion of
the 25- or 500-ms periods in which the neurons showed one or
more spikes.) Next it was shown that the mean size of the view
fields of the neurons was 0.9 of a wall. In an approach to the
issue of how an ensemble of neurons might together provide more
precise information about spatial location than a single neuron, it
was shown that in general the neurons had different centers for
their view fields. It then was shown that the information from an
ensemble of these cells about where in space is being looked at
increases approximately linearly with the number of cells in the
ensemble. This indicates that the number of places that can be
represented increases approximately exponentially with the number
of cellsin the population. It is concluded that there is an accurate
representation of space ‘‘out there’’ in the primate hippocampus.
This representation of space out there would be an appropriate part
of a primate memory system involved in memories of where in an
environment an object was seen, and more generally in the memory
of particular events or episodes, for which a spatial component
normally provides part of the context.

INTRODUCTION

Damage to the temporal |obe that includes the hippocam-
pa formation or to one of its main connection pathways,
the fornix, produces amnesia (see Gaffan 1994; Scoville
and Milner 1957; Squire and Knowlton 1994). One of the
memory deficits in amnesic humans is a major impairment
in remembering not just what objects have been seen recently
but also where they have been seen (Smith and Milner
1981). Thistype of memory is the type of memory used for
example in remembering where one's keys have been |€ft.
In experimental studies in monkeys to define the crucia
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structures to which damage produces memory impairments,
it has been shown that hippocampal or fornix damage pro-
duces deficits in learning about where objects have been
seen, in object-place memory tasks (Angeli et al. 1993; Gaf-
fan 1994; Parkinson et al. 1988).

To analyze how the hippocampus operates to help imple-
ment this type of memory, Rolls and colleagues have re-
corded from single neurons in the hippocampus while mon-
keys perform object-place memory tasks in which they must
remember where on a video monitor a picture has been
shown. They found that ~10% of hippocampal neurons re-
sponded when images were shown in some positions on the
screen (Rolls et al. 1989). Moreover, they showed that the
representation wasin alocentric (world) rather than egocen-
tric (related to the body) coordinates, in that the spatial fields
of these neurons remained in the same position on the video
monitor even when the whole monitor was moved relative
to the monkey’s body axis (Feigenbaum and Rolls 1991).

A theory that the hippocampus is a computer for spatial
navigation, computing bearings and distances to the next
place, has been built on the basis of the properties of rat
hippocampal place cells (Burgess et a. 1994). In contrast
to the findings in primates, the spatial representation pro-
vided by hippocampal neurons in rats appears to be related
to the place where the rat currently is located. That is, indi-
vidual hippocampa neurons in rats respond when the rat is
in one place in a test environment (O’ Keefe and Speakman
1987) . Becauseit is not clear whether the primate hippocam-
pus should be considered a spatial computer, with perhaps
place cells like those of rats (Ono et a. 1993), or is instead
a structure involved in storing memories, including those
with a spatial component such as where an object has been
seen, we recorded from single hippocampa neurons while
monkeys actively locomoted in a rich spatial environment.
We set up the recording situation to allow perambulation by
the monkey, because it is only during active locomotion that
the place fields of rat hippocampal neurons become evident
(Foster et al. 1989). We used a rich testing environment,
as compared with a cue-controlled environment with only a
few spatia cues, to maximize the possibility that many cells
with spatial response properties would be found. In one pre-
vious study, without active locomotion and with a cue-con-
trolled environment, we found a small number of hippocam-
pal cells that responded to spatia views of the environment,
but no cells with response fields that defined the place where
the monkey was located (Rolls and O'Mara 1995). How-
ever, that study was not with active locomotion nor with a
spatially rich environment. In a previous study with active
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locomoation in the same rich spatial environment used here,
the open laboratory, we found spatial view cells that re-
sponded when the monkey looked at one part of the environ-
ment but not when it looked at another (Rolls et a. 1997a).
These responses occurred relatively independently of where
the monkey was in the testing environment, provided that it
was looking toward a particular part of the environment.
Eye position recordings with the monkey stationary con-
firmed that these neurons fired when the monkey looked at
aparticular part of the spatial environment and not in relation
to where it was (Rolls et al. 1997a). For these reasons, the
cells were named *‘spatial view’’ and not ‘‘place’ cells. It
also has been shown that these neurons respond in relation
to where the monkey is looking in space and not to head
direction per se or to eye gaze angle per se (Georges
Francois et al. 1998).

The new investigation described here is designed to ana-
lyze the spatial properties of these cells further by comparing
for a population of these cells where in space the view field
is centered, measuring the width of each view field, and
quantifying how much information is obtained about spatial
view from the responses of these cells. The information
theoretic approach used for measuring the information avail-
able in the responses of single hippocampal neurons was
based on that used for single neurons in the inferior temporal
visual cortex (Rolls et al. 1997¢) and the orbitofrontal olfac-
tory cortex (Rolls et a. 1996). Of particular interest also
was how the information increases as more cells are added
to the ensemble. An attractive property of distributed encod-
ing is that the information available from an ensemble can
scale linearly with the size of the ensemble. If this were true
of the representation of spatial view by primate hippocampal
neurons, this would mean that the firing of even relatively
few neuronsin a sparse representation would provide consid-
erable information about spatial view. As it has been sug-
gested that a sparse code in the hippocampus might enable
it to store many different memories (each one for example
about where in space a different object was located) (Rolls
1989; Treves and Rolls 1991, 1994), it was of great interest
to try to estimate how much information might be available
(potentialy for storage) when a sparse ensemble of hippo-
campal cells was active (that is, an ensemble with few neu-
rons active). A first step in assessing this was to analyze
whether each cell wastuned to adifferent part of the environ-
ment. Only if the cells coded for different parts of the envi-
ronment, would the information rise rapidly (linearly) with
the number of cells in the ensemble. If the neurons were
just replicates of each other, so that distributing the informa-
tion only served to suppress noise through massive redun-
dancy, the signal-to-noise ratio would tend to rise in propor-
tion to the square root of the number of cellsin the ensemble,
and the information would tend to rise only logarithmically
with that number. Then we applied the information theoretic
approach described by Rolls, Treves and Tovee (1997b) to
estimating the information available from the ensemble. In
this paper, we introduce an additional procedure that can be
used when the ensemble of cells is small.

METHODS
Neurophysiological recordings

Single neurons were recorded with glass-insulated tungsten mi-
croelectrodes with methods that have been described previously
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(Rolls et a. 1989) in two rhesus monkeys. During the recordings,
each monkey (Macaca mulatta) was free to roam a 2.7 X 2.7 m
areain an open 4 x4 m laboratory in a chair on four wheels, which
allowed it to face forward. Small pieces of food were placed in
three of the four cups (c1-c4) shown in Fig. 1 from time to time
during the experiment and also were scattered sometimes on the
floor to ensure that the monkey explored the environment fully.
Three of the cups c1—c4 were provided with food to encourage
the monkey to learn about the places of food in the spatial environ-
ment. Eye position was measured to an accuracy of 1° with the
search coil technique, with the field coils attached to the walker
to which the head also was attached. The angle visible to the
monkey by eye movements was ~35° left and right and 35° up
and down, with respect to head direction. The head direction and
position in the room were measured using a video tracking device
(Datawave) with the camera in the ceiling tracking two light-
emitting diodes placed in line 25 cm apart above the head on the
top of the chair. We wrote software to provide the position of the
monkey’ s head in the room, the head direction, and the eye position
(i.e., the horizontal and vertical angles of the eye in the orbit)
every 67 ms, and from these, the gaze direction (i.e., the direction
of the eyesin world coordinates) and thus the position on the wall
of the room at which the monkey was looking were determined.
Each action potential was recorded to an accuracy of 1 ms. The
Datawave spike cutting software was used to ensure that the spikes
of well-isolated neurons were analyzed. Software was written to
measure the firing rate of the neuron whenever the monkey was
looking at a position in space. The agorithm took a fixed length
record (usually 500-ms long) whenever the eyes were steadily
fixating a position in the room during the recording and calculated
the firing rate together with where the monkey was looking during
that record. (The computer determined that the eyes were fixating
a location by taking into account both the eye gaze angle and the
head direction and position.) If there was no eye movement, the
next record was taken immediately after the preceding one. The
algorithm allowed adelay in neuronal data collection after a steady
eye position. (If the neuron started to respond 100 ms after the
monkey moved his eyes to an effective location in space, this lag
could be set to 100 ms. In practice, the lag was set for all neurons
to the small value of 50 ms.) From all such records containing a
firing rate and where the monkey was looking during the record,
it was possible to plot diagrams of the firing rate of the cell when
different locations were being viewed. [ The records were binned
typicaly into 64 bins horizontally (16 for each wall) and 16 verti-
cally, and smoothed.] It was possible to measure the neuronal
responses either while the monkey was walking round the room
or when it was stationary. In the experiments described here, it was
sometimes advantageous for the monkey to be stationary facing in
a particular direction for a number of seconds. This was facilitated
by dlipping a panel into the bottom of the walker for the monkey
to stand on instead of the floor. The monkey of course still could
actively explore his environment by making eye movements in
this condition. As described previously (Rolls et al. 1997a), the
neuronal responses when the monkey looked at a particular position
in space while it was walking were very similar to those while it
was still.

The neurons were selected to be similar to those described pre-
viously as having spatial view-related responses, that is they re-
sponded when the monkey looked at a given position in space,
relatively independently of where the monkey was (Rolls et al.
1997a). The responses of each neuron were recorded for severa
minutes during which the monkey looked at al the walls of the
environment and moved round the environment. From the hundreds
of 0.5-s samples of firing rate (each with the eyes till), graphs
were made to show the firing rate as a function of where the
monkey was looking on the four walls of the room. From these
graphs, the width of the half-maximal response was measured. For
the purposes of analyzing the information available from the cell
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about where on the walls of the environment the monkey was
looking, we binned that data as follows. We divided the four walls
into eight half-walls horizontally and two half-walls vertically and
then had available a large set of firing rates for each of the 16
guarter walls of the room (left and right, upper, and lower). From
these rates, we used the techniques described later to analyze the
information available both from each neuron taken alone and from
an ensemble of neurons about where the monkey was looking. For
the purposes of the exposition, we describe the wallsas *‘ stimuli,”’
and rephrase the analysis as estimating how much information is
available from the neuronal response of the cell in any one 0.5-s
epoch about which wall (or which part of a wall) the monkey is
looking at. We note that dividing the walls into 16 stimuli means
that the information required to decode correctly where the monkey
islooking is 4 bits. Provided that this ‘‘ceiling’’ is not reached by
the information available from one cell or the ensemble of cells,
it is not necessary to divide the space into more stimuli, in that
not much more information would be measured in the neurona
responses, as is evident also from the typical widths of the spatial
view fields. This binning was used for the information analysis.

When we calculated the sparseness of the representation as de-
scribed next, the original 64 X 16 resolution of the spatial view
measurement was used because for sparseness, large numbers of
samples in each bin are not necessary and a better estimate of the
sparseness is obtained with a large number of bins. We note that
the binning for position on the wall works best if the size of the
spatial view field on the wall remains constant even when the
monkey is at different distances from the wall. Our data do suggest
that the angular width of the receptive field decreases as the dis-
tance of the animal from the wall increases (see eg., Fig. 2 in
Rolls et a. 1997a). Although this finding is consistent with an
approximate constancy in size of the spatial view field asafunction
of the distance of the animal from the wall, a quantitative determi-
nation of this issue requires the collection of more data with a
precise sampling of the view field over alarge number of different
spatial positions. However, even if the spatial view field is not
perfectly constant in size, the result on the information analysis
would be only the injection of alittle additional noise into the data
(resulting in asmall underestimate of the trueinformation) because
the spatial bins used for the calculation of the information were
quite large (one-quarter of the wall of the room).

Sparseness of the representation

The sparseness, a, of the representation of aset of stimuli (spatial
locations in this case) provided by these neurons can be defined
and was calculated as

a= < > (rJS))Z/ > (rils)

s=1S s=1S

where rq is the firing rate to the sth stimulus in the set of Sstimuli.
The sparseness has a maximal value of 1.0. This is a measure of
the extent of the tail of the distribution, in this case, of the firing
rates of the neuron to each stimulus. A low value indicates that
there is a long tail to the distribution, equivalent in this case to
only a few stimuli with high firing rates. If these neurons were
binary (either responding with a high firing rate, or not re-
sponding), then a value of 0.2 would indicate that 20% of the
stimuli produced high firing rates in a neuron and 80% produced
no response. In the more general case of a continuous distribution
of firing rates, the sparseness measure, a, still provides a quantita-
tive measure of the length of the tail of the firing rate distribution
(Treves and Rolls 1991). This measure of the sparseness of the
representation of a set of stimuli by a single neuron has a number
of advantages, detailed by Rolls and Tovee (1995). One is that it
is the same measure of sparseness that has proved to be useful and
tractable in formal analyses of the capacity of neural networks that
use an approach derived from theoretical physics (see Rolls and
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Treves 1990; Treves 1990; Treves and Rolls 1991). A second
advantageisthat it can be applied to neurons that have continuously
variable (graded) firing rates and not just to firing rates with a
binary distribution (e.g., 0 or 100 spikes/s) (Treves and Rolls
1991). A third is that it makes no assumption about the form of
the firing rate distribution (e.g., binary, ternary, exponential, etc.)
and can be applied to different firing rate distributions (Treves and
Rolls 1991). Fourth, it makes no assumption about the mean and
the variance of the firing rate. Fifth, the measure does not make
any assumption about the number of stimuli in the set and can be
used with different numbers of test stimuli. Its maximal value is
always 1.0, corresponding to the situation when a neuron responds
equally to all the stimuli in aset of stimuli. The use of this measure
of sparseness in neurophysiological investigations has the advan-
tage that the neurophysiological findings then provide one set of
the parameters useful in understanding theoretically (Rolls and
Treves 1990; Treves and Rolls 1991, 1994) how the system oper-
ates.

For the purpose of calculating the sparseness a, the spatial loca-
tions were the 64 X 16 bins. A rate for a bin was used only if
there was =1 s of data when the monkey was looking at that
particular location. In typical experiments, there was sufficient data
for the sparseness to be calculated over 100—300 such stimuli.
Obvioudly the spatial resolution of the binning is limited by the
recording time (or number of 500-ms periods) available, because
finer bins would necessarily sometimes be empty. One can realize
easily that taking a coarser binning on the same data produces
higher values for a or apparently more distributed representations.
Because of this overestimation effect, we chose to use relatively
many bins to compute a, even if that meant relying on as few as
two 500-ms samples per bin. Note that sparseness is a measure
not strongly affected by limited sampling. Because the information
measures described in the following text are, instead, strongly sen-
sitive to limited sampling, to compute them we had to limit spatial
resolution to that achieved with only 16 bins.

Information available in the responses of single neurons

The principles of the information theoretic analysis for single
neurons were similar to those developed by Richmond and Optican
(Optican and Richmond 1987; Richmond and Optican 1987) ex-
cept that we applied a novel correction procedure for the limited
number of trials. The analytic correction procedure we use was
developed by Treves and Panzeri (Panzeri and Treves 1996; Treves
and Panzeri 1995) to which we refer for a detailed discussion, and
its efficacy in eliminating the limited sampling bias recently was
compared with that of an alternative empiric procedure by Golomb
et a. (1997). Asin Rolls et a. (1997c), a novel aspect of the
data analysis described here is that we investigated how much
information was available about each stimulusin the set. Theinfor-
mation theoretic analyses described and used here were based on
the information available from the firing rate measured in 500-,
100-, and 25-ms periods when the eyes were steadily fixating a
position in the room.

If each stimulus, s, were to evoke its own response, r (or its
own set of unique responses), then on measuring r one would
ascertain s, and thus gain 1(s) = —log, P(s) bits of information,
where P(s) is the a priori probability of occurrence of a particular
stimulus (in this case, alocation in space) s. If instead, as happens
in general, the same response sometimes can be shared, with differ-
ent probabilities, by several stimuli, the probabilistic stimulus-
response relation will be expressed by a table of probabilities
P(s, r) or, equivaently, of conditional probabilities P(r|s) =
P(s, r)/P(s). The information about s gained by knowing r can
be evaluated from the formula

P(s|r)
P(s)

I(s,R) = 3 P(r[s) log; (1)
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[ This can be regarded as the difference between the original uncer-
tainty about s (or a priori entropy) and the residual uncertainty
after r is known, and attains its maximum value | (s) = —log, P(s)
only if the probabilistic relation reduces to the deterministic one
P(s|r) = 1for s = s(r), and P(s|r) = O otherwise]

Averaging over different stimuli s in the set of stimuli S one
obtains the average information gain about the set of stimuli S
present in the neuronal spike data R (where R denotes the set of
responses r) as

P(s, 1)

PPy @

I(S,R) = > P(s)I(s,R) = 3 P(s,r) log,

In the results, we show both I (s, R), the information available
in the responses of the cell about each individual stimulus s; and
I (S, R), the average information across all stimuli that is provided
about which of the set of stimuli was presented.

In evaluating the information content from the data recorded,
the neuronal responses were simply quantified by the number of
spikes within any 500-ms time period, as stated above, that is we
used a unidimensional measure based on afiring rate measurement.
Both the set of stimuli S and the set of responses R in general
could be continua (and the information | in the relation between
the two still would be well defined because of the finite resolution
with which responses can help discriminate among stimuli) . How-
ever, in practice, to evaluate I, it is better to discretize both stimuli
and responses to ensure adequate sampling of the spaces, and the
number of discrete bins in each space must not be too high for
limited sampling effects, even after the correction procedure we
apply, not to bias information estimates based on limited numbers
of trials (Treves and Panzeri 1995). In our analysis, Sis discretized
into 16 spatial bins as explained above, and there is no need to
discretize R because R effectively is discretized already into a
suitably low number of bins. (This is because by measuring re-
sponses as the number of spikes in 500 ms or less, these spike
counts never exceeded 15-20 for hippocampal cells with their low
rates.)

Information available in the responses of an ensemble of
neurons

DECODING AND CROSS-VALIDATION PROCEDURE. In estimating
the information carried by the responses of several cells, the analy-
sisinvolved, first of al, constructing pseudosimultaneous popula-
tion response vectorsr , occurring, as it were, in what were labeled
as ‘‘test’” trials [r is a vector with 1 element (or component) for
each of the C cells considered]. Each response vector was com-
pared with the mean population response vector to each stimulus,
as derived from a different set of ‘‘training’’ or reference data, to
estimate, by means of one of several decoding algorithms, as de-
scribed later, the relative probabilities P(s’|r) that the response r
had been elicited by any one stimulus s’ in the set. Summing over
different test trial responses to the same stimulus s, we could
extract the probability that by presenting stimulus s, the neuronal
response would be interpreted as having been dlicited by stimulus
s’ and from that the resulting measures of percent correct identifi-
cation and of the information decoded from the responses.
Separating the test from the training data is called cross-valida-
tion and was performed in detail as follows, using the so called
jack-knife technique. One of the available trials for each stimulus
was used for testing, and the remaining trials for training. The
resulting probabilities that s is decoded as s’, however, were aver-
aged over al choices of test trials, thus aleviating finite sampling
problems, as described by Rolls, Treves and Tovee (1997b).

Algorithms for likelihood estimation

Several different decoding algorithms were used for estimating
from the recorded response the likelihood of each stimulus, i.e.,
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P(s’|r). In the fina analysis reported here, two are selected,
namely the Euclidean distance and the dot product. The probability
estimator (PE) agorithm, which tries to reconstruct the correct
Bayesian probabilities from the data assuming a particular distribu-
tion of the neuronal responses such as Gaussian or Poisson (see
Rolls et a. 1997b), was used but the results are not reported here
because it was found that the sparse distribution of hippocampal
cell responses fitted each of these distributions less well than in
the case of inferior temporal cortex cells. The information and
percent correct values obtained with the PE algorithm were, in any
case, very similar (and usually slightly inferior) to those obtained
with the Euclidean distance algorithm.

Both the algorithms that produced the results we report try to
emulate the processing that could be performed by neurons receiv-
ing the output of the neuronal population recorded, thus extracting
that portion of the information theoretically available that could
be extracted with simple neurophysiologically plausible operations
by receiving neurons. The DP (dot product) algorithm is simpler
asit just computes the normalized dot products between the current
firing vector r on a test trial and each of the mean firing rate
response vectors in the training trials for each stimulus s’. (The
normalized dot product is the dot or inner product of two vectors
divided by the product of the length of each vector. The length of
each vector is the sguare root of the sum of the squares.) Thus
what is computed are the cosines of the angles of the test vector
of cell rates with the mean response vector to each stimulus in
turn. The highest dot product indicates the most likely stimulus
that was presented, and this is taken as the best guess for the
percentage correct measures. For the information measures, it is
desirable to have a graded set of probabilities resulting from the
decoding for which of the different stimuli was shown, and these
were obtained from the dot products as follows. The Sdot product
values were cut at a threshold equal to their own mean plus SD,
and the remaining nonzero ones were normalized to sum to 1. It
is clear that in this case each operation could be performed by an
elementary neuronal circuit (the dot product by a weighted sum of
excitatory inputs, the thresholding by activity-dependent inhibitory
subtraction, and the normalization by divisive inhibition).

The ED (Euclidean distance) algorithm calculates the stimulus
likelihood as a decreasing function of the Euclidean distance be-
tween the mean response vector to each stimulus and the test
vector. The specific function used was exp(—d?/202), whered =
(Irs — r]) and o is the standard deviation of the responses calcu-
lated across all training trials and stimuli. The smaller this Euclid-
ean distance is between the response vector of a test trial to a
stimulus and the average response vector to a stimulus, the more
likely it is that the stimulus on the test trial is the stimulus that
produced that average response vector. Here response vector refers
to the vector of firings of the set of cells in the ensemble. This
measure is similar in principle to the biologically plausible dot
product decoding considered before, in that both might be per-
formed by a cell that received the test vector as a set of input
firings and produced an output that depends on its synaptic weight
vector, which represents the average response vector to a stimulus
(see Rolls and Treves 1998). The slight additional complexity of
the ED algorithm is that the lengths of both the mean response
vectors and test vectors (which must be computed also by the DP
algorithm for normalization) are used directly in combination with
the dot product itself because d? = rg-rg — 2r-rg + r-r. The
ED agorithm yields higher values for both percent correct and
information, and thus it appearsto minimize the lossin information
due to the decoding step; we nevertheless report also values ob-
tained with the DP agorithm to provide some indication of the
extent to which the precise type of decoding used quantitatively
affects the results.

Probability and frequency tables

Having estimated the relative probabilities that the test trial re-
sponse had been elicited by any one stimulus, the stimulus which
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turned out to be most likely, i.e., that which had the highest (esti-
mated) probability, was defined to be the predicted stimulus, s”.
The fraction of times that the predicted stimulus s” was the same
asthe actua stimulus, s, is directly ameasure of the percent correct
for a given data set. In parallel, the estimated relative probabilities
(normalized to 1) were averaged over al test trials for all stimuli,
to generate atable PR (s, s') describing the relative probability of
each pair of actual stimulus s and posited stimulus s’. We aso
generated a second (frequency) table P{ (s, s7) from the fraction
of times an actual stimulus s €licited a response that led to a
predicted (most likely) stimulus s”. The difference between the
table PR and the table Pf can be appreciated by noting that each
vector comprising a pseudosimultaneous trial contributes to PR a
set of numbers (1 for each possible s’) the sum of which is 1,
whereas to P, it contributes a single 1 for s” and zeroes for all
other stimuli. Obviously each contribution was normalized by di-
viding, in both cases, by the total number N of (test) trialsavailable
(see Rolls et a. 1997b).

Information measures

Information values can be extracted from the joint probability
tables P(s, s’) as from any other probability table P(s, r). Again,
when the probability table has to be estimated as the frequency
table of a limited data sample, it becomes crucial to evaluate the
effects of limited sampling on the information estimate. Because
when considering the actual responses of severa cellsr turns into
a multidimensional quantity (a vector, r), the minimum number
of trials required to sample sufficiently the response space becomes
very large [it grows exponentially with the dimensionality of that
space, i.e., the number of cells considered (Treves and Panzeri
1995)]. Thisis what rules out, in the case of populations of more
than very few cells, any attempt to evaluate directly the quantity
I(S R) and forces us to resort to the (standard) procedure of
deriving from the original frequency table of stimuli and responses
an auxiliary table, of actual and potential stimuli, the latter being
simply functions of the responses spanning a discrete set with a
reduced number of elements (equal, that is, to the number of stim-
uli). In general, the information content of the auxiliary table will
be less than that of the original table by an amount that depends
on the severity of the manipulation performed. If the decoding is
efficient, that is, if it extracts from the responses nearly all that the
responses can tell about the stimulus, then, by construction, not
much information is lost in the decoding step. The fact that a
decoding operation may be a plausible part of the processing pro-
duced by the nervous system at some stage adds credibility to
the procedure, which is in any case necessary, of estimating the
information carried by several cells only after decoding their re-
sponses. Two types of auxiliary tables were derived here, called

R and P} see preceding text.

Information estimates corrected for the limited number of
trials

The procedure introduced so far for estimating information val-
ues, both for single cells [ from the probability table P(s, r)]
and for ensembles of cells [ from either the table PF(s, sP) or
PR(s, s’)] must be supplemented by a procedure that corrects the
raw estimates for their limited sampling biases. In practice, in fact,
because of the limited number of trials that can be collected, the
various probability tables are not available, and one can at best
approximate them with frequency tables, e.q., Py(s, r), computed
on the basis of a (limited) number of trials N. If N is very large,
the frequencies should get close to the underlying probabilities,
but for any finite N there will be a discrepancy, which will result
in an error in the estimated information gain. This error decreases
as the number of trials for each stimulus increases. Because infor-
mation quantities depend on probabilities not in a linear but in a
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greater than linear manner, the error deriving from this ‘‘limited
sampling’’ does not cancel out on averaging many measurements;
it is, instead, usually biased upward, resulting in an (average)
overestimate of the information gain, as described by Tovee et al.
(1993), Treves and Panzeri (1995), and Rollsand Treves (1998).

The net bias, or average error (usually an overestimating er-
ror), can be expressed analyticaly as a formal expansion in
1/N, and the first few terms (in particular, the very first) of this
expansion can be evaluated directly (Panzeri and Treves 1996)
in a variety of situations. Simulation experiments have shown
that the first term in the expansion is responsible for most of the
discrepancy between the raw and correct information measures,
whereas successive terms do not in fact correl ate with the remain-
der of the discrepancy. Thisfirst term then can be subtracted from
the raw estimates to produce corrected estimates. This procedure
has been shown to improve significantly the reliability of informa-
tion estimates based on limited data samples, as discussed also
in an explicit comparison with an alternative procedure by Go-
lomb et al. (1997). The procedure provides a good correction
(<5% error) when the number of trials for each stimulusislarger
than the number of bins R into which the neuronal responses are
discretized [when decoding is used, this number of bins reduces
to S (see preceding text; Golomb et al. 1997; Panzeri and Treves
1996)]. With respect to the correction based on another proce-
dure, which we used in previous investigations (Tovee and Rolls
1995; Tovee et al. 1993), one should note that, while in several
cases it yields information values that are close to those obtained
with the present procedure, it cannot be applied to compute the
stimulus-specific information | (s, R). Thisis one case, therefore,
in which it was essential to develop a novel procedure to correct
for limited sampling.

With respect to the sensitivity to limited sampling of the different
measures of the information carried by an ensemble of cells, it is
worthwhile to note the following. In deriving Pf, each response
is used to predict its stimulus. Although sP spans only S values
compared with the very large number of possible (multidimen-
sional) rate responses, the auxiliary table is otherwise unregular-
ized in that each trial of alimited total number produces arelatively
large‘‘bump’’ in PR (s, s7). Theresult of thisisthat araw estimate
of 1(S, S7) [which can be denoted as I (S, S7) to point out that
it is obtained from atotal of N trials] can still be very inaccurate,
in particular, overestimated. The correction methods we use, on
the other hand, are safely applicable when the subtracted term
[+1n(S, S7) — I(S, S7)] issmaller than ~1 bit. With the present
data, the subtracted term turns out to be safely small except in
some cases when few cells are considered.

PR, on the other hand, can be conceived of as being more
“regularized’’ than P because each trial contributes not a rela-
tively large bump to just to one bin s” but smaller additions to
severa bins s’. The consequence is that the distortion in the infor-
mation estimate due to limited sampling (small N) is smaller, and
the subtraction of a suitable correction term [1y(S, S')] — I(S,
S’) is enough to produce accurate corrected estimates of informa-
tion. The correction term to be used differs from that appropriate
to correct I (S, S°) or I1(S, R), and we refer to Panzeri and Treves
(1996) and to Rolls, Treves, and Tovee (1997b) for details. Here
it is sufficient to note, again, that 1 (S, S’) (as best estimated with
the present correction procedure) will in any case tend to a‘‘true’’
value that, being based on a regularized probability distribution, is
less than the value (unmeasurable except with few cells) attained
by 1(S, R). The same applies to 1(S, S7). In a previous paper
(Rolls et a. 1997b), we have used I(S, S') as a substitute for
I (S, S7) when thelatter could not be safely estimated dueto limited
sampling. In the present work, relatively more data are available,
but we still prefer to report | (S, S') values, because they are more
smooth. In any case, we have calculated the information with both
methods, and the values are very close for the decoding algorithms
used in this paper. Residua limited sampling problems were en-
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countered in some cases in which ensembles of few cells with very
low firing activity were considered (essentially because in those
cases on most trials the ensemble firing vectors are equal to the
null vector, and only the remaining trials effectively convey infor-
mation), and to control for them, we used the procedure described
next.

Calculation of the information directly from the responses
of cells with sparse firing rate distributions

A new aternative procedure for information measurement con-
tained in a population of cells developed for use with the low
firing rates and sparse firing rate distributions characteristic of
hippocampal cells is introduced next. With such distributions, it
is possible to consider the responses of single neurons in even
100-ms periods as being binary without losing a significant amount

5
Q

3 4.00

g — —av153c3d _ _ o

3 .- av153cia FIG. 2. Profll_% of the response magnltudqs (in spikes/
& 192¢1 s computed during 500-ms periods) of 5 different cells
2 — - avivee shown as a function of where on the walls the monkey was
& —av200c1a  |ooking in the horizontal axis (extracted from data binned
@ 2.00 | —=—av232¢1  injust 64 horizonta bins).

=

of information, as we have quantitatively checked at the single cell
level. We then binarize single cell responses by labeling them as
0 if no spike was emitted during the given time period and as 1 if
at least 1 spike was emitted, and thus we represent the response
by the whole ensemble as a binary response vector. As with C
cells, there are only 2€ possible responses; it is feasible to collect
as many trials as there are, in practice, different types of response
for up to perhaps five cells (which thus would need 32 trials,
but only if every possible response actually occurred; in practice
responses where more than 1-2 cells fire are very rare, and the
number of actual outputs is <10-15). The information analysis
is reliable when the number of trials per stimulus is at least as
large as the number of actual responses (see Panzeri and Treves
1996; Rolls and Treves 1998). With this type of analysis, there is
no need for any decoding procedure, and the information can be
calculated directly from Eq. 2 with the finite sampling correction

TABLE 1. Quantitative measures of the response characteristics of the different hippocampal neurons

Cell I(S R | max Is00 a Aus 8500 Sp Peak Rate Site Cell Number
avl42 0.021 0.134 0.188 0.322 0.04 0.201 0.2 12 DENT 1
av148 0.049 0.535 0.154 0.053 0.004 0.035 0.0 9 CAl 2
avl53cl 0.060 0.310 0.277 0.334 0.048 0.190 0.0 9 PSUB 3
av153c3 0.036 0.282 0.216 0.297 0.017 0.179 0.3 9 PHG 4
avl80 0.128 0.264 0.153 0.296 0.046 0.230 0.2 12 PHG 5
avlsl 0.171 0.726 0.282 0.349 0.088 0.298 0.5 24 CAl 6
avl91l 0.170 0.830 0.488 0.388 0.113 0.346 0.0 24 PHG 7
avl92cl 0.159 0.390 0.432 0.229 0.025 0.163 0.0 75 PSUB 8
avl92c2 0.064 0.518 0.271 0.250 0.012 0.122 0.0 75 PSUB 9
av192c2cl2 0.054 0.236 0.361 0.208 0.003 0.049 0.0 75 PSUB 10
avl97 0.162 0.579 0.312 0.323 0.080 0.338 0.6 18 PSUB 11
av200cl 0.056 0.351 0.162 0.124 0.012 0.135 0.0 45 PHG 12
av216 0.056 0.150 0.185 0.242 0.039 0.163 0.0 21 PHG 13
av221 0.144 0.754 0.348 0.310 0.001 0.018 0.2 195 PHG 14
av222 0.035 0.122 0.091 0.205 0.024 0.144 0.2 12 CA1l 15
av229 0.180 1.057 0.589 0.068 0.083 0.366 0.0 135 CAl 16
av232 0.091 0.746 0.332 0.129 0.023 0.125 0.0 18 CA1l 17
av273.1 0.241 1.007 0.749 0.399 0.174 0.406 0.0 30.75 PHG 18
av273.2 0.141 0.394 0.604 0.200 0.054 0.239 0.0 21 PHG 19
av296 0.133 0.276 0.376 0.131 0.035 0.176 0.1 18 PHG 20
az033cl 0.150 0.519 0.305 0.206 0.029 0.155 0.0 9 CA3 21
az033c2a 0.127 0.710 0.295 0.141 0.023 0.105 0.0 9.2 CA3 22
az033c2acl2 0.028 0.141 0.199 0.098 0.021 0.124 0.0 25 CA3 23
az034clcll 0.042 0.278 0.389 0.211 0.037 0.171 0.0 7.25 CA3 24
az102 0.012 0.098 0.108 0.072 0.009 0.090 0.0 1.0 CA1l 25
az103 0.335 1.359 0.535 0.332 0.086 0.370 0.0 175 PSUB 26
Mean 0.109 0.491 0.323 0.227 0.043 0.189 0.1 13.2

Note: a is calculated from 64 horizontal X 16 vertical spatial bins in which there were =1 s of data in 500-ms runs. I(S R) is the mutua information
available in 100 ms about spatial view. |, is the maximum information about any of the 16 stimuli or views available in 100 ms. sy is the mutua
information available in 500 ms about the spatial view. Sp, spontaneous rate; DENT, dentate gyrus; PHG, parahippocampal gyrus; PSUB, parasubiculum.
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applied. The advantage of this procedure is that when it can be
applied, it is more direct because it does not involve a decoding
step and thus allows the relation between the number of cells
and the information available to be specified accurately for small
numbers of cells.

RESULTS

An example of the firing rate of a hippocampal pyramidal
cell when the monkey was walking round the environment
isshown in Fig. 1A. The inner set of four rectangular boxes
show where the monkey |ooked on the four walls. (The top
of each wall is furthest from the center.) The outer set of
four boxes again represent the four walls, but in these, a
spot indicates where the cell fired. It is clear that the cell
has a spatia view field located mainly on wall 3. To show
in more detail how the firing rate of the neuron varied as a
function of where the monkey was looking, we show in Fig.
1B that for the same cell, the firing rate (gray scale calibra-
tion, bottom) projected onto a representation of the four
walls of the room.

The profiles of the response magnitudes of a sample of
the different cells plotted as a function of where on the walls
the monkey was looking in the horizontal axis are shown in
Fig. 2. The values for any horizontal point were averaged
over the vertical values. (Further examples of similar plots
for different cells are provided by Georges-Francois et al.
1998; Robertson et al. 1998; Rolls et a. 1997a; where full
details of the response properties of hippocampal spatial
view cells in primates are provided). From Fig. 2 it can be
seen that each cell typically hasits spatial view field centered
a a different position relative to the other cells. It aso can
be seen that the view fields are typically quite extensive
horizontally, with mean half-amplitude widths of 0.9 walls.

Information available in the responses of single neurons

A histogram showing the values of I (S, R) (the average
information in the responses of a cell about the stimulus set
within 100-ms periods) for each of the 26 cells in the two
monkeys for which sufficient data were collected for the analy-
ses described hereis provided in Fig. 3A. Mot of the neurons
had values for I (S, R) in the range 0.05—0.2 bits, with the
average across the population of neurons being 0.11 hits. All
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these neurons showed a significant differential response to the
different walls in one-way analyses of variance. For a 500-ms
period, the average information provided by these cells about
which location the monkey was looking at was 0.32 bits. Thus
there was a reasonable amount of information available in the
firing rates of these neurons in a 100- and a 500-ms period
about spatid location ‘‘ out there,”” even though the firing rates
of the neurons were low, with a mean pesk response to the
most effective spatid location of 13.2 spikes/s (compared with
a spontaneous rate of 0.1 spikes/s). Although | (S, R) may not
appear to be high, it should be remembered that this neuronal
information measure is equivalent to the average of al the
information contained in the responses to the individua stimuli
(corrected for the minor differences in the number of trids).
If many of the stimuli (walls) evoke a smilar neurond re-
sponse, then the average information from the neurond re-
sponse about which stimulus was being looked at is low.

To understand the representation of individual stimuli by
individual cells, the specific information 1(s) available in
the neuronal response about each stimulus s in the set of
stimuli S was calculated for each cell. If the neuron re-
sponded to one of the stimuli (1 of the half walls) and not
to any other, then the maximum information contained when
that effective stimulus was shown would be 4 bits,
and of the other simuli close to O hits (in fact, l0og,(16/15) =
0.09 bits). The maximum information values |, of the
different neurons about any one stimulus are shown in Fig.
3B and Table 1, again calculated for 100-ms periods of the
neuronal response. The mgjority for 100 ms are in the range
0.2—0.8 hits. The mean value of |, for the different cells
was 0.49 bits for 100 ms. For a 500-ms period, the mean
value of 1, was 1.2 bits (see Table 1).

Sparseness of the representation

The data above indicate that the encoding of information
about spatial view in this population of neurons is not
achieved by very finely tuned neurons, that is, the representa-
tion is likely to be achieved by distributed encoding. To
quantify this, the measure a of the sparseness of the represen-
tation was calculated. The sparseness measure indicates the
length of the tail of the distribution of neuronal responses
to the stimuli such that low values indicate high selectivity

FIG. 3. A: histogram showing the values of (S,
7 R) (the average information in the responses of a
cell about the stimulus set in a 100-ms period) for
each cell; here spatial views were binned into a total
of 16 stimuli. B: maximum information values |
of the different neurons about any 1 stimulus avail-
able in a 100-ms period.

A I(S,R) 16 views 100 ms B max 1(s,R) 16 views 100 ms
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FIG. 4. A: distribution of the number of spikes emitted by a CA3 neuron in 100-ms periods. B: distribution of the number

of spikes emitted by a CA3 neuron in 500-ms periods.

to one or afew of the stimuli in the set, and a value of 0.5
if the neurons had binary firing rates (e.g., firing or not)
would indicate equa (firing) responses to half the stimuli
and no response to the other half. Sparseness was calculated
in the manner described in METHODS.

Table 1 shows the sparsenesses a of the neurona responses
(sampled in 500-ms periods) in the 64 horizontal < 16 vertical
spatia locations into which the walls of the room were divided.
It can be seen that none of the neurons had very low values
for a, that is, the coding was relatively distributed. The mean
valuefor awas0.22, indicating somewhat distributed encoding.

Figure 4A shows the distribution of the number of spikes
emitted by a typical neuron in 100-ms periods. This is of
interest, because it shows the statistics of the spike arrivals
that might be expected in other hippocampal neurons receiv-
ing from the recorded neuron, in atimethat is already longer
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015 .
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0051 .
0

0 1 2 3 4 5
Rate/Rateavg
FIG. 5. Average across the population of cells of the number of spikes

emitted during 100-ms periods. To compute this average distribution, the
firing rate of each cell was normalized to 1.0 by dividing it by its mean.

Probability

than or in the order of size of the synaptic and membrane
time constants. For comparison, we show also the spike
count distribution calculated during 500-ms time periods in
Fig. 4B for the same CA3 cell. The averages across the
population of 26 cells of the firing rate distributions are
shown in Figs. 5 and 6. These distributions were calculated
by normalizing the mean firing rate of each cell to 1, so that
cells could be combined.

To obtain a quantitative measure to reflect this distribu-
tion, the sparseness of the neuronal responses was cal culated
from 25- and 500-ms time periods of the neurona response
[i.e, using the formula

a= < > (ri/n)>2

i=1n

> (rein)

i=1n

where r; is the firing rate in the ith 25-ms period of the
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FIG. 6. Average across the population of cells of the number of spikes
emitted during 500-ms periods. To compute this average distribution, the
firing rate of each cell was normalized to 1.0 by dividing it by its mean.
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neuronal activity measured during >5 min while the monkey
explored the environment]. Note that this is a measure of
the sparseness of the spike count distribution, that is, of the
number of time bins with 0, 1, 2 spikes, etc. irrespective of
how the firing correlates with spatial view. The interest of
this measure is that it summarizes the statistics of the spikes
received by aneuron in short time periods down to aslow as

4 5 6
Number of Cells

estimates of the time constant of the fast excitatory synapses,
considering also dendritic delays (which, even combined,
are not beyond 25 ms). It can be seen that the sparseness
of the representation described in this way takes a small
value. The mean value of ay for the neurons in Table 1 was
0.04. This period was chosen because it is in the order of
size of the time constants of the hippocampal synaptic events
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which set the time scale of the operation of the system (see
further Treves 1993). Essentially because over 25 ms these
cells behave roughly as binary units, the result is that on
average they fire (usualy just 1 spike) during 4% of all 25-
ms periods in the recording session. The results of a similar
calculation for spike sparseness values based on 500-mstime
periods are shown in Table 1 as asy. The 500-ms period

was chosen because it is of the order of time over which a
new memory might be learned, and thus thisis the sparseness
value which will set the sparseness of the synaptic weight
vector on a neuron that might be laid down for a single
memory. This value of sparseness, denoted here as asq, has
a mean value of 0.19, close to the value a calculated from
the mean responses to each spatial view. Note that this does



1808

50 T T

Percentage of information
=]
<
L

(e b [
0

0 1 2 3 4 5
Rate/Rateavg

FIG. 9. Percentage of the information carried by the different levels of
firing rate for this population of 26 cells. Average rate for each cell was
normalized to 1 so that the cells could be combined. Firing rate measure
on the abscissa is the firing rate expressed as a fraction of the mean rate
for the cell.

not imply that on average these cells fire 19% of all 500-
ms periods because over 500 msthey do not behave as binary
units. Rather, the sparseness value obtained is a measure of
the tail of the firing rate distribution computed over 500 ms,
and it turns out not to matter very much whether it is calcu-

26 cells, 100 ms
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lated irrespective of spatial view, as in asy, or from the
mean responses to each view, as in a. Either way, this is
roughly the value that might be expected to influence the
number of memories stored in an associative network (see
Rolls and Treves 1998).

Information available from an ensemble of these neurons

The values for the average information, I (s, s'), avail-
able in the responses of different numbers of these neurons
on each trial, about which of the 16 stimuli (i.e., walls) is
being looked at, are shown in Fig. 7A for 100-ms periods.
The Euclidean distance decoding algorithm was used for
estimating the relative probability of posited stimuli s’. The
same data produced the percent correct predictions reported
in Fig. 7B. It can be seen that the information rises approxi-
mately linearly with population size from its baseline level
(which is zero for 0 cells) for the first four to five cells
and after that increases less rapidly. The percent correct
also rises approximately linearly with population size from
its baseline (chance) level (which is 100/S = 6.25 for the
percent correct). The 20 cells were, of course, all from the
same animal (av) and used 40 trials from every cell in
amost all cases. (For 25-ms analysis, 40 trials were avail-
able for every cell for every stimulus; the number of trials
was 2% less than ideally required for 100-ms time win-

rate/rateavg

Fic. 10. Information|(s, R) availablein
the response of the set of 26 hippocampal
neurons about each of the stimuli in the set
of 16 stimuli, each of which was a different
part of space (abscissa), with the firing rate
of the neuron to the corresponding stimulus
plotted as a function of this on the ordinate.
— — —, mean firing rate of the cell. Average
rate of the cell on the ordinate was normal-
ized to 1 so that the cells could be combined.
Stimulus-specific information is divided by
the mean number of spikes emitted by the
cell on the abscissa and has the meaning of
the information about a particular stimulus
availablein 1 mean interspike interval of the
cell. ——, how the information per spike
about a stimulus is related to the firing rate
of a neuron to that stimulus in the limit of
short time windows (see Rolls et al. 1997c).
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dows, but we checked that the small number of random
missing trials that needed replication had a negligible effect
on the information analysis.)

To investigate to what extent the information does rise
linearly, we applied the direct information measurement pro-
cedure possible with binary rate distributions and compared
the results with the Euclidean distance decoding procedure
in Fig. 7C. The analysis was performed separately for neu-
rons in different parts of the hippocampal formation and
separately for each animal. The comparison shows that the
increase of information is closely linear with the number of
cellswhen using the direct information measurement (which
is possible for =5 cells) and that the measurement based
on decoding (in this case ED decoding) underestimates the
information for more than about four cells. The underestima-
tion probably is related to the sparseness of the firing rate
distributions of hippocampal neurons, which makes the de-
coding step lose some of the information. The conclusion is
that the somewhat less than linear increase in information
apparent in Fig. 7A for more than about four cellsis probably
just due to the inefficiency of the decoding procedure when
applied to these low firing rate neurons. (The fact that the
increase of information with the direct information measure-
ment method may appear to be close to supralinear in the
number of cellsis probably that with 5 cells the finite sam-
pling correction for the limited number of trialsis operating
at its limit, given that the number of trials per stimulus
was 40 and the dimensionality of the binary response space
is 32.)

The results from the same set of cells analyzed with dot
product decoding also are shown in Fig. 7, A and B. The
reason that the information is zero and the percent correct
is at chance with one cell for DP decoding is, obviously,
that then the dot product of the test trial vector of cell re-
sponses with any of the average response vectors to the
stimuli is essentially meaningless.

The multiple cell information analysis for the same set of
cellsanalyzed asin Fig. 7 but with ashorter time for each trid
(i.e., period within which the eyes are still, and the number of
spikes is measured) of 25 ms are shown in Fig. 8.

It is possible to show how much of the information is
carried by the different levels of firing rate, given the mean
firing rates elicited by each stimulus and the corresponding
I (s, R) values that have been the subject of this paper. The
result is shown in Fig. 9 for 100 ms, averaged over the 26
cells. It is of considerable interest that much of the informa-
tion was available from the firing rates that were below the
mean (normalized to 1 in Fig. 9), related to the fact that
low firing rates were very common. The mode of this distri-
bution is between 0.0 and 0.25 with respect to the mean
firing rate across al stimuli. This is linked to the fact that
information is arelative measure. This results in someinfor-
mation at very low rates relative to the mean rate. Given the
high probability of very low rates for hippocampal cells, the
total information conveyed by low rates is thus high, as
shown in Fig. 9. It is aso shown in Fig. 9 that there is a
dip in the information available in those rates that are near
the mean rate for each cell. This is related to the fact that
stimuli that evoke a firing rate response close to the mean
across all stimuli carry little information. This point is made
more explicitly in Fig. 10, which shows the information
available about each stimulus in relation to the firing rate
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response to the same stimulus. Figure 10 shows that firing
rates above, or below, the mean convey information.

The sites at which these 26 cells were recorded are shown
in Fig. 11. Ten werein the hippocampal pyramidal cell fields
CA3 or CAL. They were probably hippocampal pyramidal
cells, as shown by the large amplitude action potentials, very
low spontaneous firing ratesin thistype of experiment (mean
0.2 spikes/s), and relatively low peak firing rates (mean
10.5 spikes/s) (cf. Feigenbaum and Rolls 1992). Sixteen
were in the overlying cortical areas or paracortical areas,
including the parahippocampal gyrus, which connect the hip-
pocampus to other cortical areas. The mean spontaneous
firing rates of these cortical neurons in this type of experi-
ment was 0.1 spikes/s, and the peak firing rates had a mean
of 15.1 spikes/s.

DISCUSSION

The neurophysiological results described here show that
the information about where (on the walls of the room) the
monkey was looking increases approximately linearly with
the number of cells in the ensemble. This shows that the
information conveyed by a hippocampa neuron is roughly
independent of that carried by other hippocampal neurons.
Put another way, the number of stimuli, in this case locations
in space, that can be encoded by a population of neuronsin
this part of the brain increases approximately exponentially
as the number of cells in the sample increases. That is, the
log of the number of stimuli increases approximately linearly
as the number of cellsin the sample isincreased. Thisisin
contrast to a local encoding scheme (of ‘‘grandmother’”’
cells), in which it is the number of stimuli encoded that
increases linearly with the number of cellsinthe sample. The
conclusion isthat one of the attractive potential properties of
distributed encoding, that the number of stimuli that can be
encoded increases exponentialy with the number of cellsin
the representation, is expressed by this population of hippo-
campal neurons. A mechanism that has been suggested to
contribute to this is the pattern separation (or orthogonaliza-
tion) performed by the dentate granule cells operating as a
competitive network and by the mossy fiber projection to
the CA3 cells (Rolls 1989; Rolls and Treves 1998; Treves
and Rolls 1992).

That an exponentially increasing capacity with anincrease
in cell number is a potential property of a distributed repre-
sentation can be seen clearly from the following example.
Consider the number of stimuli that can be encoded by a
population of C neurons without noise. If local encoding is
used (i.e, a single neuron specifies the stimulus, that is
grandmother cell encoding), and the representation is binary
(e.g., the neuron is either active or not), then C different
stimuli can be encoded. (One different neuron is on for
each stimulus.) If distributed encoding is allowed, then 2¢
different stimuli can be encoded. (2€ isthe number of differ-
ent combinations of C binary variables.) The fundamental
guestion addressed in this paper is the extent to which the
hippocampal system can use the potential advantage of dis-
tributed representations to encode a very large (exponen-
tially large) number of different stimuli in a population of
neurons. The potential advantage only will be usefully real-
ized to the extent that each member of the population of
neurons has different responses to each stimulus in a set of
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stimuli (with, e.g., different combinations of neurons firing
to each stimulus) and to the extent that the responses of a
neuron on agiven trial are not too noisy. That is, the standard
deviation of the responses of a neuron to the same stimulus
on different trials must not be too great, and the responses
to different stimuli must be reliably different to each other.
Evidence on this issue only can be obtained by examining
the response properties of real neurons in the brain. The
results described in this paper show the extent to which
these conditions are met, that is that the neurons do have
sufficiently different view field centers (see Fig. 2), and the
firing of each neuron is sufficiently reliable and independent
(Figs. 7 and 8).

The results described here also show that a reasonable
amount of information about spatial location is provided
by primate hippocampal neurons. For example, the average
information provided by these cells about which location the
monkey was looking at was 0.32 bits, and the mean across
cells of the maximum information conveyed about which
location was being looked at was 1.20 bits, measured in a
period of 0.5 s. In astudy performed in rats, the information
from an ensemble of hippocampal place cells about the rat’s
location has been estimated as on average ~0.3 bits in a
period of 0.5 s (Treves et a. 1996).

Two different algorithms were used to estimate which of
the average response vectors (1 for each stimulus) most
closely matched the vector of cell responses being produced
by atest stimulus. The ED agorithm was found to be more
powerful and appropriate given the low firing rates of hippo-
campal neurons than decoding methods based on Gaussian
or Poisson firing rate distributions. In addition, it was found
that with another neurally plausible algorithm (the DP algo-
rithm) that cal culates which average response vector the neu-
ronal response vector was closest to by performing anormal-
ized dot product (equivalent to measuring the angle between
the test and the average response vector), the same generic
results were obtained with similar percent correct and only
a 15—-20% reduction in information compared with the more
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Fic. 11. Hippocampa and parahippo-
campal sites at which different spatial view
cells were recorded. Cells are numbered, and
cross-refer to Table 1.

efficient (ED) algorithm. Thisis an indication that the brain
could use the exponentially increasing capacity for encoding
stimuli as the number of neuronsin the population increases.
The details of the decoding that may be used by actua
neurons do matter but in a quantitatively minor way (both
the ED and DP algorithm require an estimate of the Euclid-
ean ‘‘length’’ of the firing rate vector, an operation that
could be performed by feedforward inhibition, but then use
this quantity in slightly different ways). For example, in an
autoassociative memory [which we believe may be imple-
mented in the hippocampus (see Rolls 1989; Treves and
Rolls 1994)], which computes effectively the dot product
on each neuron between the input vector and the synaptic
weight vector, most of the information available would in
fact be extracted (see Rolls and Treves 1990, 1998; Treves
and Rolls 1991).

The new procedure for information measurement con-
tained in a population of cells developed for use with the
low firing rates and sparse firing rate distributions described
here, which calculates the information directly from binar-
ized neuronal response vectors, confirmed with precision
that the information available did increase linearly with the
number of cellsin an ensemble. The algorithm can be used
when there are as many trials as there are actual response
vectors, in practice up to about five célls. It is very helpful
from amethodological point of view, because it allowsinde-
pendent confirmation of the operation of the decoding proce-
dures used in the other algorithms.

One of the important points made here is that because
the representational capacity of a set of neurons increases
exponentialy, neurons in the next brain region would each
need to sample the activity of only a reasonable number
(eg., a few hundred) of what might be a much larger cell
population and yet still obtain information about which of
many stimuli (e.g., locations in space) had been seen. This
would be useful for recall of information from the hippocam-
pus via backprojection pathways to the neocortex (see
Treves and Rolls 1994).
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Comparison of the results shown in Figs. 7 and 8 (with
100- and 25-ms periods, respectively) highlight the value of
having large numbers of neurons of the type described here.
They make it clear that part of the value is that information
can be made available very rapidly about which stimulus is
present if the responses of a population of neurons, rather
than just a single neuron, are considered. Moreover, the fact
that the representation provided by each neuron is apparently
independent to that provided by other neurons means that
the information is available very rapidly from whichever
subset of neuronsistaken. Thisrapid availability of informa-
tionfroma“‘population’’ of neuronsisonefactor that contri-
butesto the very rapid processing of informationinthe brain,
for even in a short time much information is available from
the population, alowing the information from one cortical
area to be extracted very rapidly by the next (see further
Rolls 1994; Rolls and Tovee 1994; Rolls and Treves 1998).

A point that certainly merits further investigation is the
effect of generating pseudosimultaneoustrials (as performed
here), rather than recording simultaneously from large popu-
lations of cells (Wilson and McNaughton 1993) . Particularly
in exploring fine points such as the presence of trial-to-
trial correlations in the responses, it is helpful to have some
evidence about simultaneously recorded cells in the primate
hippocampus, to check, for example that the simultaneously
recorded cells do convey independent information, consis-
tent with the linear increase in information with the number
of cellsin the ensemble described here. In fact, we do have
preliminary evidence that this is indeed the case in the pri-
mate hippocampus, in that six of the cells described here
were recorded as three pairs and with this simultaneous re-
cording still conveyed information that was largely indepen-
dent. In particular, with simultaneous recording the informa-
tion increased linearly with the number of cells as found
for the nonsimultaneous recordings. Further, the information
values obtained from the three cell pairs when they were
analyzed as simultaneously recorded were on average 4%
more than the values when they were treated as not being
simultaneously recorded. (The treatment for nonsimultane-
ous analysis involved simply randomly shuffling the order
of the trials for each stimulus.) The redundancy (see Rolls
and Treves 1998) was on average 0% for the simultaneously
recorded analysis and 4% for the nonsimultaneously re-
corded analysis. The result indicates that the cells do carry
almost independent information. We are continuing with si-
multaneous recordings and will provide a full report on si-
multaneously recorded cells in the primate hippocampus in
future. However, we note further evidence that the conclu-
sion described here is reasonable, in that in analyses of cells
recorded simultaneously in the rat, the information provided
by different hippocampal cellsisalso independent, given that
shuffling the rat data to produce nonsimultaneously recorded
virtual trials makes little difference to the information analy-
ses (Treves et al. 1996).

These experiments also showed that the representation
provided by these hippocampal neurons, is very sparse, with
a5 = 0.04. Twenty-five milliseconds is the order of the time
scale of the time constants of synaptic transmission. If only
0 or 1 spike was produced by a neuron in this time period,
then we could treat the neuronal system as a network of
binary neurons rather than as one with graded firing rates.
The probability distribution of different numbers of spikes
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shown in Figs. 5 and 6 indicate that the neurons very rarely
produce more than one spike in 100 ms (and do so with the
very low probability of 0.01 in atime period of 25 ms), so
that on the time scale of operation of these neurons in the
hippocampus, it may be appropriate to consider them as
binary variables. Now, to maximize the number of memories
stored in an autoassociative attractor neural network such as
that which could be implemented by the hippocampal CA3
neurons, it can help to have sparse and binary representations
(Rolls 1989, 1995; Rolls et al. 1997d; Treves and Rolls
1991, 1994). However, we note that the time scale of the
operation of the synaptic modification involved in learning
may be considerably longer, on the order of 100 ms or
more, partly because of effects such as the relatively slow
unbinding of glutamate from the N-methyl-p-aspartate re-
ceptor. Another factor lengthening the time scale may be
the behavior, in that the animal may process the data for
times on the order of =0.5 s, for example, by looking for
=0.5 sat alocation in space where an object is present. This
may mean that the actual sparseness of the firing relevant to
the synaptic representation laid down for a memory may be
more like the value a5y, Which was on average 0.19. Indeed,
the storage capacity in depending on the synaptic matrix and
not the instantaneous firing rates of the neurons is likely to
reflect this value of the sparseness or, even more, the value
of ashownin Table 1, which is 0.22 for these spatial neurons
considered alone. Effectively, we interpret the attractors as
set up by the learning that might occur over the order of
=0.5 s, so that what is important is the sparseness a rather
than the sparseness of the neuronal spikes arriving over
25-ms periods. The network as a whole, when operating as
an attractor network as has been suggested for CA3, then
would be working in the ‘‘low firing rate regime’’ and with
rather sparse representations (Rolls and Treves 1998).

The representation in the hippocampus may be more
sparse than that in the temporal visual cortical areas where
values of 0.6 are common (Rolls and Tovee 1995). This
may allow more information to be represented in the pattern
of firing of tempora cortical visual neurons than in hippo-
campal neurons. It has been suggested that this difference
in the type of coding is that the more distributed encoding
in the visua cortex alows much information to be repre-
sented about what is being seen and that the more sparse
binary encoding in the hippocampus allows many memories
to be stored at the cost of less information per memory than
would be possible with a more distributed representation.
Indeed, the amount of information present in a hippocampal
memory now can be estimated. If each CA3 spatial neuron
represents on average 0.3 bits of information about spatial
location in 500 ms, if (conservatively) 5% of hippocampal
CA3 neurons represented spatial information, and if the neu-
rons are tested in a sufficiently large spatial world with the
neurons coding nonredundantly (see further Rolls et al.
1997b), then the information about spatial location in any
one hippocampa memory in 1,000,000 CA3 neurons might
be as high as 5%101,000,000010.3 bits = 15,000 hits. If a
neuron downstream had access to the outputs of, say, 1,000
of these CA3 cells, it would ‘‘see’’ then 15 bits of spatia
information, which is still a considerable amount (they allow
precise discriminations to be made between 2'° ~ 30,000
locations).

Many spatial view (or ‘‘space’’ or ‘‘view'’) neurons have
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been found in this series of experiments in the locomoting
monkey (for a description of 40 spatial view cells, see Rolls
et al. 1997a). No place cells have been found that responded
based on where the monkey was, as contrasted with where
it was looking in the environment. These cellsin the primate
hippocampus are thus unlike place cells found in the rat
(Muller et al. 1991; O’ Keefe 1979). Primates, with their
highly developed visual and eye movement control systems,
can explore and remember information about what is present
a places in the environment without having to visit those
places. Such view cells in primates thus would be useful
as part of a memory system in that they would provide a
representation of a part of space that would not depend on
exactly where the monkey was and that could be associated
with items that might be present in those spatial locations.
An example of the use of such a representation in monkeys
might be in enabling a monkey to remember where it had
seen ripe fruit; in humans, it might help in remembering
where they had seen a person or where they had left keys.
The representations of space provided by hippocampal view-
responsive neurons thus may be useful in forming memories
of gpatial environments (for example of where an object
such as ripe fruit has been seen).

The representation of space in the rat hippocampus, which
is of the place where the rat is, may be related to the fact
that with a much less developed visual system than the pri-
mate, the rat’s representation of space may be defined more
by the olfactory and tactile as well as distant visual cues
present and thus may tend to reflect the place where the rat
is. Although the representation of spacein rats therefore may
be in some ways analogous to the representation of space
in the primate hippocampus, the difference does have impli-
cations for theories of hippocampal function. In rats, the
presence of place cells has led to theories that the rat hippo-
campus is a spatial cognitive map and can perform spatial
computations to implement navigation through spatial envi-
ronments (Burgess et al. 1994; O'Keefe 1991; O'Keefe and
Nadel 1978). The details of such navigational theories could
not apply in any direct way to what is found in the primate
hippocampus. Instead, what is applicable to both the primate
and rat hippocampal recordings is that hippocampal neurons
contain arepresentation of space (for therat, primarily where
the rat is, and for the primate, primarily of positions ‘‘out
there’’ in space) that is a suitable representation for the
spatial information encoded in an episodic memory system.
In primates, this would enable one to remember for example
where an object was seen. In rats, it might enable memories
to be formed of where particular objects (e.g., defined e.g.,
by olfactory, tactile, and taste inputs) were found. Thus,
a least in primates and possibly aso in rats, the neuronal
representation of space in the primate hippocampus may be
appropriate for forming memories of events (which usually
have a spatial component). Such memories would be useful
for spatial navigation, for which according to the present
hypothesis the hippocampus would hit the memory compo-
nent but not the spatial computation component.

Finally, the spatial representation found would be ideal
for association within the hippocampus to a representation
of an object to implement an episodic memory. We have
suggested that such an episodic memory could be laid down
in the hippocampus using the neuronal network process of
association, implemented by the recurrent collateral axons

ROLLS, TREVES, ROBERTSON, GEORGES-FRANCOIS, AND PANZERI

of the CA3 neurons (see Rolls 1989, 1995; Rolls and Treves
1998; Treves and Rolls 1994).
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