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Rolls, Edmund T., Alessandro Treves, Robert G. Robertson, structures to which damage produces memory impairments,
Pierre Georges-François, and Stefano Panzeri. Information it has been shown that hippocampal or fornix damage pro-
about spatial view in an ensemble of primate hippocampal cells. duces deficits in learning about where objects have been
J. Neurophysiol. 79: 1797–1813, 1998. Hippocampal function was seen, in object-place memory tasks (Angeli et al. 1993; Gaf-
analyzed by making recordings from hippocampal neurons in mon- fan 1994; Parkinson et al. 1988).keys actively walking in the laboratory. ‘‘Spatial view’’ cells,

To analyze how the hippocampus operates to help imple-which respond when the monkey looks at a part of the environment,
ment this type of memory, Rolls and colleagues have re-were analyzed. To assess quantitatively the information about the
corded from single neurons in the hippocampus while mon-spatial environment represented by these cells, we applied informa-

tion theoretic techniques to their responses. The average informa- keys perform object-place memory tasks in which they must
tion provided by these cells about which location the monkey was remember where on a video monitor a picture has been
looking at was 0.32 bits, and the mean across cells of the maximum shown. They found that Ç10% of hippocampal neurons re-
information conveyed about which location was being looked at sponded when images were shown in some positions on the
was 1.19 bits, measured in a period of 0.5 s. There were 16 loca- screen (Rolls et al. 1989). Moreover, they showed that thetions for this analysis, each being one-quarter of one of the walls

representation was in allocentric (world) rather than egocen-of the room. It also was shown that the mean spontaneous rate of
tric (related to the body) coordinates, in that the spatial fieldsfiring of the neurons was 0.1 spikes/s, that the mean firing rate in
of these neurons remained in the same position on the videothe center of the spatial field of the neurons was 13.2 spikes/s,
monitor even when the whole monitor was moved relativeand that the mean sparseness of the representation measured in a

25-ms period was 0.04 and in a 500-ms time period was 0.19. to the monkey’s body axis (Feigenbaum and Rolls 1991).
(The sparseness is approximately equivalent to the proportion of A theory that the hippocampus is a computer for spatial
the 25- or 500-ms periods in which the neurons showed one or navigation, computing bearings and distances to the next
more spikes.) Next it was shown that the mean size of the view place, has been built on the basis of the properties of rat
fields of the neurons was 0.9 of a wall. In an approach to the

hippocampal place cells (Burgess et al. 1994). In contrastissue of how an ensemble of neurons might together provide more
to the findings in primates, the spatial representation pro-precise information about spatial location than a single neuron, it
vided by hippocampal neurons in rats appears to be relatedwas shown that in general the neurons had different centers for
to the place where the rat currently is located. That is, indi-their view fields. It then was shown that the information from an

ensemble of these cells about where in space is being looked at vidual hippocampal neurons in rats respond when the rat is
increases approximately linearly with the number of cells in the in one place in a test environment (O’Keefe and Speakman
ensemble. This indicates that the number of places that can be 1987). Because it is not clear whether the primate hippocam-
represented increases approximately exponentially with the number pus should be considered a spatial computer, with perhaps
of cells in the population. It is concluded that there is an accurate place cells like those of rats (Ono et al. 1993), or is insteadrepresentation of space ‘‘out there’’ in the primate hippocampus.

a structure involved in storing memories, including thoseThis representation of space out there would be an appropriate part
with a spatial component such as where an object has beenof a primate memory system involved in memories of where in an
seen, we recorded from single hippocampal neurons whileenvironment an object was seen, and more generally in the memory

of particular events or episodes, for which a spatial component monkeys actively locomoted in a rich spatial environment.
normally provides part of the context. We set up the recording situation to allow perambulation by

the monkey, because it is only during active locomotion that
the place fields of rat hippocampal neurons become evident

I N T R O D U C T I O N (Foster et al. 1989). We used a rich testing environment,
as compared with a cue-controlled environment with only aDamage to the temporal lobe that includes the hippocam-
few spatial cues, to maximize the possibility that many cellspal formation or to one of its main connection pathways,
with spatial response properties would be found. In one pre-the fornix, produces amnesia (see Gaffan 1994; Scoville
vious study, without active locomotion and with a cue-con-and Milner 1957; Squire and Knowlton 1994). One of the
trolled environment, we found a small number of hippocam-memory deficits in amnesic humans is a major impairment
pal cells that responded to spatial views of the environment,in remembering not just what objects have been seen recently
but no cells with response fields that defined the place wherebut also where they have been seen (Smith and Milner
the monkey was located (Rolls and O’Mara 1995). How-1981). This type of memory is the type of memory used for
ever, that study was not with active locomotion nor with aexample in remembering where one’s keys have been left.

In experimental studies in monkeys to define the crucial spatially rich environment. In a previous study with active
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(Rolls et al. 1989) in two rhesus monkeys. During the recordings,locomotion in the same rich spatial environment used here,
each monkey (Macaca mulatta) was free to roam a 2.7 1 2.7 mthe open laboratory, we found spatial view cells that re-
area in an open 4 14 m laboratory in a chair on four wheels, whichsponded when the monkey looked at one part of the environ-
allowed it to face forward. Small pieces of food were placed inment but not when it looked at another (Rolls et al. 1997a).
three of the four cups (c1–c4) shown in Fig. 1 from time to timeThese responses occurred relatively independently of where during the experiment and also were scattered sometimes on the

the monkey was in the testing environment, provided that it floor to ensure that the monkey explored the environment fully.
was looking toward a particular part of the environment. Three of the cups c1–c4 were provided with food to encourage
Eye position recordings with the monkey stationary con- the monkey to learn about the places of food in the spatial environ-
firmed that these neurons fired when the monkey looked at ment. Eye position was measured to an accuracy of 17 with the

search coil technique, with the field coils attached to the walkera particular part of the spatial environment and not in relation
to which the head also was attached. The angle visible to theto where it was (Rolls et al. 1997a). For these reasons, the
monkey by eye movements was Ç357 left and right and 357 upcells were named ‘‘spatial view’’ and not ‘‘place’’ cells. It
and down, with respect to head direction. The head direction andalso has been shown that these neurons respond in relation
position in the room were measured using a video tracking deviceto where the monkey is looking in space and not to head
(Datawave) with the camera in the ceiling tracking two light-direction per se or to eye gaze angle per se (Georges- emitting diodes placed in line 25 cm apart above the head on the

François et al. 1998). top of the chair. We wrote software to provide the position of the
The new investigation described here is designed to ana- monkey’s head in the room, the head direction, and the eye position

lyze the spatial properties of these cells further by comparing (i.e., the horizontal and vertical angles of the eye in the orbit)
for a population of these cells where in space the view field every 67 ms, and from these, the gaze direction (i.e., the direction

of the eyes in world coordinates) and thus the position on the wallis centered, measuring the width of each view field, and
of the room at which the monkey was looking were determined.quantifying how much information is obtained about spatial
Each action potential was recorded to an accuracy of 1 ms. Theview from the responses of these cells. The information
Datawave spike cutting software was used to ensure that the spikestheoretic approach used for measuring the information avail-
of well-isolated neurons were analyzed. Software was written toable in the responses of single hippocampal neurons was
measure the firing rate of the neuron whenever the monkey wasbased on that used for single neurons in the inferior temporal looking at a position in space. The algorithm took a fixed length

visual cortex (Rolls et al. 1997c) and the orbitofrontal olfac- record (usually 500-ms long) whenever the eyes were steadily
tory cortex (Rolls et al. 1996). Of particular interest also fixating a position in the room during the recording and calculated
was how the information increases as more cells are added the firing rate together with where the monkey was looking during
to the ensemble. An attractive property of distributed encod- that record. (The computer determined that the eyes were fixating

a location by taking into account both the eye gaze angle and theing is that the information available from an ensemble can
head direction and position.) If there was no eye movement, thescale linearly with the size of the ensemble. If this were true
next record was taken immediately after the preceding one. Theof the representation of spatial view by primate hippocampal
algorithm allowed a delay in neuronal data collection after a steadyneurons, this would mean that the firing of even relatively
eye position. (If the neuron started to respond 100 ms after thefew neurons in a sparse representation would provide consid-
monkey moved his eyes to an effective location in space, this lagerable information about spatial view. As it has been sug- could be set to 100 ms. In practice, the lag was set for all neurons

gested that a sparse code in the hippocampus might enable to the small value of 50 ms.) From all such records containing a
it to store many different memories (each one for example firing rate and where the monkey was looking during the record,
about where in space a different object was located) (Rolls it was possible to plot diagrams of the firing rate of the cell when
1989; Treves and Rolls 1991, 1994), it was of great interest different locations were being viewed. [The records were binned

typically into 64 bins horizontally (16 for each wall) and 16 verti-to try to estimate how much information might be available
cally, and smoothed.] It was possible to measure the neuronal(potentially for storage) when a sparse ensemble of hippo-
responses either while the monkey was walking round the roomcampal cells was active (that is, an ensemble with few neu-
or when it was stationary. In the experiments described here, it wasrons active) . A first step in assessing this was to analyze
sometimes advantageous for the monkey to be stationary facing inwhether each cell was tuned to a different part of the environ-
a particular direction for a number of seconds. This was facilitatedment. Only if the cells coded for different parts of the envi- by slipping a panel into the bottom of the walker for the monkey

ronment, would the information rise rapidly (linearly) with to stand on instead of the floor. The monkey of course still could
the number of cells in the ensemble. If the neurons were actively explore his environment by making eye movements in
just replicates of each other, so that distributing the informa- this condition. As described previously (Rolls et al. 1997a), the
tion only served to suppress noise through massive redun- neuronal responses when the monkey looked at a particular position
dancy, the signal-to-noise ratio would tend to rise in propor- in space while it was walking were very similar to those while it

was still.tion to the square root of the number of cells in the ensemble,
The neurons were selected to be similar to those described pre-and the information would tend to rise only logarithmically

viously as having spatial view-related responses, that is they re-with that number. Then we applied the information theoretic
sponded when the monkey looked at a given position in space,approach described by Rolls, Treves and Tovee (1997b) to
relatively independently of where the monkey was (Rolls et al.estimating the information available from the ensemble. In
1997a). The responses of each neuron were recorded for severalthis paper, we introduce an additional procedure that can be
minutes during which the monkey looked at all the walls of theused when the ensemble of cells is small. environment and moved round the environment. From the hundreds
of 0.5-s samples of firing rate (each with the eyes still ) , graphsM E T H O D S
were made to show the firing rate as a function of where the

Neurophysiological recordings monkey was looking on the four walls of the room. From these
graphs, the width of the half-maximal response was measured. ForSingle neurons were recorded with glass-insulated tungsten mi-

croelectrodes with methods that have been described previously the purposes of analyzing the information available from the cell
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FIG. 1. Cell av148. A : view field of a
hippocampal pyramidal cell during free ex-
ploration of the 2.7 1 2.7 m area. A spot
on the inner set of 4 rectangles, each of
which represents one of the walls of the
room, indicates where on a wall the mon-
key had been looking every 25 ms during
the 7-min recording session. Bottom of the
wall is represented closest to the center of
the diagram. A spot on the outer set of
4 rectangles indicates where the cell fired
during the 7-min recording session. One
spot is shown for each action potential. B :
for the same cell the firing rate (gray scale
calibration, bottom) projected onto a repre-
sentation of the 4 walls of the room.
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about where on the walls of the environment the monkey was Treves 1990; Treves 1990; Treves and Rolls 1991). A second
advantage is that it can be applied to neurons that have continuouslylooking, we binned that data as follows. We divided the four walls

into eight half-walls horizontally and two half-walls vertically and variable (graded) firing rates and not just to firing rates with a
binary distribution (e.g., 0 or 100 spikes/s) (Treves and Rollsthen had available a large set of firing rates for each of the 16

quarter walls of the room (left and right, upper, and lower) . From 1991). A third is that it makes no assumption about the form of
the firing rate distribution (e.g., binary, ternary, exponential, etc.)these rates, we used the techniques described later to analyze the

information available both from each neuron taken alone and from and can be applied to different firing rate distributions (Treves and
Rolls 1991). Fourth, it makes no assumption about the mean andan ensemble of neurons about where the monkey was looking. For

the purposes of the exposition, we describe the walls as ‘‘stimuli,’’ the variance of the firing rate. Fifth, the measure does not make
any assumption about the number of stimuli in the set and can beand rephrase the analysis as estimating how much information is

available from the neuronal response of the cell in any one 0.5-s used with different numbers of test stimuli. Its maximal value is
always 1.0, corresponding to the situation when a neuron respondsepoch about which wall (or which part of a wall) the monkey is

looking at. We note that dividing the walls into 16 stimuli means equally to all the stimuli in a set of stimuli. The use of this measure
of sparseness in neurophysiological investigations has the advan-that the information required to decode correctly where the monkey

is looking is 4 bits. Provided that this ‘‘ceiling’’ is not reached by tage that the neurophysiological findings then provide one set of
the parameters useful in understanding theoretically (Rolls andthe information available from one cell or the ensemble of cells,

it is not necessary to divide the space into more stimuli, in that Treves 1990; Treves and Rolls 1991, 1994) how the system oper-
ates.not much more information would be measured in the neuronal

responses, as is evident also from the typical widths of the spatial For the purpose of calculating the sparseness a , the spatial loca-
tions were the 64 1 16 bins. A rate for a bin was used only ifview fields. This binning was used for the information analysis.

When we calculated the sparseness of the representation as de- there was ¢1 s of data when the monkey was looking at that
particular location. In typical experiments, there was sufficient datascribed next, the original 64 1 16 resolution of the spatial view

measurement was used because for sparseness, large numbers of for the sparseness to be calculated over 100–300 such stimuli.
Obviously the spatial resolution of the binning is limited by thesamples in each bin are not necessary and a better estimate of the

sparseness is obtained with a large number of bins. We note that recording time (or number of 500-ms periods) available, because
finer bins would necessarily sometimes be empty. One can realizethe binning for position on the wall works best if the size of the

spatial view field on the wall remains constant even when the easily that taking a coarser binning on the same data produces
higher values for a or apparently more distributed representations.monkey is at different distances from the wall. Our data do suggest

that the angular width of the receptive field decreases as the dis- Because of this overestimation effect, we chose to use relatively
many bins to compute a , even if that meant relying on as few astance of the animal from the wall increases (see e.g., Fig. 2 in

Rolls et al. 1997a). Although this finding is consistent with an two 500-ms samples per bin. Note that sparseness is a measure
not strongly affected by limited sampling. Because the informationapproximate constancy in size of the spatial view field as a function

of the distance of the animal from the wall, a quantitative determi- measures described in the following text are, instead, strongly sen-
sitive to limited sampling, to compute them we had to limit spatialnation of this issue requires the collection of more data with a

precise sampling of the view field over a large number of different resolution to that achieved with only 16 bins.
spatial positions. However, even if the spatial view field is not
perfectly constant in size, the result on the information analysis

Information available in the responses of single neuronswould be only the injection of a little additional noise into the data
(resulting in a small underestimate of the true information) because The principles of the information theoretic analysis for single
the spatial bins used for the calculation of the information were neurons were similar to those developed by Richmond and Optican
quite large (one-quarter of the wall of the room). (Optican and Richmond 1987; Richmond and Optican 1987) ex-

cept that we applied a novel correction procedure for the limited
Sparseness of the representation number of trials. The analytic correction procedure we use was

developed by Treves and Panzeri (Panzeri and Treves 1996; TrevesThe sparseness, a, of the representation of a set of stimuli (spatial and Panzeri 1995) to which we refer for a detailed discussion, andlocations in this case) provided by these neurons can be defined its efficacy in eliminating the limited sampling bias recently wasand was calculated as compared with that of an alternative empiric procedure by Golomb
et al. (1997). As in Rolls et al. (1997c), a novel aspect of thea Å S ∑

sÅ1,S

(rs /S)D 2Y ∑
sÅ1,S

(r 2
s /S)

data analysis described here is that we investigated how much
information was available about each stimulus in the set. The infor-

where rs is the firing rate to the sth stimulus in the set of S stimuli. mation theoretic analyses described and used here were based on
The sparseness has a maximal value of 1.0. This is a measure of the information available from the firing rate measured in 500-,
the extent of the tail of the distribution, in this case, of the firing 100-, and 25-ms periods when the eyes were steadily fixating a
rates of the neuron to each stimulus. A low value indicates that position in the room.
there is a long tail to the distribution, equivalent in this case to If each stimulus, s , were to evoke its own response, r (or its
only a few stimuli with high firing rates. If these neurons were own set of unique responses) , then on measuring r one would
binary (either responding with a high firing rate, or not re- ascertain s , and thus gain I(s) Å 0log2 P(s) bits of information,
sponding), then a value of 0.2 would indicate that 20% of the where P(s) is the a priori probability of occurrence of a particular
stimuli produced high firing rates in a neuron and 80% produced stimulus (in this case, a location in space) s . If instead, as happens
no response. In the more general case of a continuous distribution in general, the same response sometimes can be shared, with differ-
of firing rates, the sparseness measure, a , still provides a quantita- ent probabilities, by several stimuli, the probabilistic stimulus-
tive measure of the length of the tail of the firing rate distribution response relation will be expressed by a table of probabilities
(Treves and Rolls 1991). This measure of the sparseness of the P(s , r) or, equivalently, of conditional probabilities P(rÉs) Å
representation of a set of stimuli by a single neuron has a number P(s , r) /P(s) . The information about s gained by knowing r can
of advantages, detailed by Rolls and Tovee (1995). One is that it be evaluated from the formula
is the same measure of sparseness that has proved to be useful and
tractable in formal analyses of the capacity of neural networks that I(s , R) Å ∑

r

P(rÉs) log2
P(sÉr)
P(s)

(1)
use an approach derived from theoretical physics (see Rolls and
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[This can be regarded as the difference between the original uncer- P(s *Ér) . In the final analysis reported here, two are selected,
namely the Euclidean distance and the dot product. The probabilitytainty about s (or a priori entropy) and the residual uncertainty

after r is known, and attains its maximum value I(s) Å 0log2 P(s) estimator (PE) algorithm, which tries to reconstruct the correct
Bayesian probabilities from the data assuming a particular distribu-only if the probabilistic relation reduces to the deterministic one

P(sÉr) Å 1 for s Å s(r) , and P(sÉr) Å 0 otherwise.] tion of the neuronal responses such as Gaussian or Poisson (see
Rolls et al. 1997b), was used but the results are not reported hereAveraging over different stimuli s in the set of stimuli S one
because it was found that the sparse distribution of hippocampalobtains the average information gain about the set of stimuli S
cell responses fitted each of these distributions less well than inpresent in the neuronal spike data R (where R denotes the set of
the case of inferior temporal cortex cells. The information andresponses r) as
percent correct values obtained with the PE algorithm were, in any
case, very similar (and usually slightly inferior) to those obtainedI(S , R) Å ∑

s

P(s)I(s , R) Å ∑
s ,r

P(s , r) log2
P(s , r)

P(s)P(r)
(2)

with the Euclidean distance algorithm.
Both the algorithms that produced the results we report try toIn the results, we show both I(s , R) , the information available

emulate the processing that could be performed by neurons receiv-in the responses of the cell about each individual stimulus s; and
ing the output of the neuronal population recorded, thus extractingI(S , R) , the average information across all stimuli that is provided
that portion of the information theoretically available that couldabout which of the set of stimuli was presented.
be extracted with simple neurophysiologically plausible operationsIn evaluating the information content from the data recorded,
by receiving neurons. The DP (dot product) algorithm is simplerthe neuronal responses were simply quantified by the number of
as it just computes the normalized dot products between the currentspikes within any 500-ms time period, as stated above, that is we
firing vector r on a test trial and each of the mean firing rateused a unidimensional measure based on a firing rate measurement.
response vectors in the training trials for each stimulus s* . (TheBoth the set of stimuli S and the set of responses R in general
normalized dot product is the dot or inner product of two vectorscould be continua (and the information I in the relation between
divided by the product of the length of each vector. The length ofthe two still would be well defined because of the finite resolution
each vector is the square root of the sum of the squares.) Thuswith which responses can help discriminate among stimuli) . How-
what is computed are the cosines of the angles of the test vectorever, in practice, to evaluate I, it is better to discretize both stimuli
of cell rates with the mean response vector to each stimulus inand responses to ensure adequate sampling of the spaces, and the
turn. The highest dot product indicates the most likely stimulusnumber of discrete bins in each space must not be too high for
that was presented, and this is taken as the best guess for thelimited sampling effects, even after the correction procedure we
percentage correct measures. For the information measures, it isapply, not to bias information estimates based on limited numbers
desirable to have a graded set of probabilities resulting from theof trials (Treves and Panzeri 1995). In our analysis, S is discretized decoding for which of the different stimuli was shown, and theseinto 16 spatial bins as explained above, and there is no need to were obtained from the dot products as follows. The S dot productdiscretize R because R effectively is discretized already into a values were cut at a threshold equal to their own mean plus SD,suitably low number of bins. (This is because by measuring re- and the remaining nonzero ones were normalized to sum to 1. It

sponses as the number of spikes in 500 ms or less, these spike is clear that in this case each operation could be performed by an
counts never exceeded 15–20 for hippocampal cells with their low elementary neuronal circuit ( the dot product by a weighted sum of
rates.) excitatory inputs, the thresholding by activity-dependent inhibitory

subtraction, and the normalization by divisive inhibition).
Information available in the responses of an ensemble of The ED (Euclidean distance) algorithm calculates the stimulus

likelihood as a decreasing function of the Euclidean distance be-neurons
tween the mean response vector to each stimulus and the test

DECODING AND CROSS-VALIDATION PROCEDURE. In estimating vector. The specific function used was exp(0d 2 /2s 2) , where d Å
the information carried by the responses of several cells, the analy- (Érs 0 rÉ) and s is the standard deviation of the responses calcu-
sis involved, first of all, constructing pseudosimultaneous popula- lated across all training trials and stimuli. The smaller this Euclid-
tion response vectors r , occurring, as it were, in what were labeled ean distance is between the response vector of a test trial to a
as ‘‘test’’ trials [r is a vector with 1 element (or component) for stimulus and the average response vector to a stimulus, the more
each of the C cells considered]. Each response vector was com- likely it is that the stimulus on the test trial is the stimulus that
pared with the mean population response vector to each stimulus, produced that average response vector. Here response vector refers
as derived from a different set of ‘‘training’’ or reference data, to to the vector of firings of the set of cells in the ensemble. This
estimate, by means of one of several decoding algorithms, as de- measure is similar in principle to the biologically plausible dot
scribed later, the relative probabilities P(s*Ér) that the response r product decoding considered before, in that both might be per-
had been elicited by any one stimulus s * in the set. Summing over formed by a cell that received the test vector as a set of input
different test trial responses to the same stimulus s , we could firings and produced an output that depends on its synaptic weight
extract the probability that by presenting stimulus s, the neuronal vector, which represents the average response vector to a stimulus
response would be interpreted as having been elicited by stimulus (see Rolls and Treves 1998). The slight additional complexity of
s* and from that the resulting measures of percent correct identifi- the ED algorithm is that the lengths of both the mean response
cation and of the information decoded from the responses. vectors and test vectors (which must be computed also by the DP

Separating the test from the training data is called cross-valida- algorithm for normalization) are used directly in combination with
tion and was performed in detail as follows, using the so called the dot product itself because d 2 Å rsrrs 0 2rrrs / rrr . The
jack-knife technique. One of the available trials for each stimulus ED algorithm yields higher values for both percent correct and
was used for testing, and the remaining trials for training. The information, and thus it appears to minimize the loss in information
resulting probabilities that s is decoded as s *, however, were aver- due to the decoding step; we nevertheless report also values ob-
aged over all choices of test trials, thus alleviating finite sampling tained with the DP algorithm to provide some indication of the
problems, as described by Rolls, Treves and Tovee (1997b). extent to which the precise type of decoding used quantitatively

affects the results.
Algorithms for likelihood estimation Probability and frequency tables

Several different decoding algorithms were used for estimating Having estimated the relative probabilities that the test trial re-
sponse had been elicited by any one stimulus, the stimulus whichfrom the recorded response the likelihood of each stimulus, i.e.,
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turned out to be most likely, i.e., that which had the highest (esti- greater than linear manner, the error deriving from this ‘‘limited
sampling’’ does not cancel out on averaging many measurements;mated) probability, was defined to be the predicted stimulus, sP .

The fraction of times that the predicted stimulus sP was the same it is, instead, usually biased upward, resulting in an (average)
overestimate of the information gain, as described by Tovee et al.as the actual stimulus, s , is directly a measure of the percent correct

for a given data set. In parallel, the estimated relative probabilities (1993), Treves and Panzeri (1995), and Rolls and Treves (1998).
(normalized to 1) were averaged over all test trials for all stimuli, The net bias, or average error (usually an overestimating er-

ror) , can be expressed analytically as a formal expansion into generate a table PR
N(s , s*) describing the relative probability of

1/N , and the first few terms ( in particular, the very first ) of thiseach pair of actual stimulus s and posited stimulus s*. We also
expansion can be evaluated directly (Panzeri and Treves 1996)generated a second (frequency) table PF

N(s , sP) from the fraction
in a variety of situations. Simulation experiments have shownof times an actual stimulus s elicited a response that led to a
that the first term in the expansion is responsible for most of thepredicted (most likely) stimulus sP . The difference between the
discrepancy between the raw and correct information measures,table PR

N and the table PF
N can be appreciated by noting that each

whereas successive terms do not in fact correlate with the remain-vector comprising a pseudosimultaneous trial contributes to PR
N a

der of the discrepancy. This first term then can be subtracted fromset of numbers (1 for each possible s*) the sum of which is 1,
the raw estimates to produce corrected estimates. This procedurewhereas to PF

N, it contributes a single 1 for sP and zeroes for all
has been shown to improve significantly the reliability of informa-other stimuli. Obviously each contribution was normalized by di-
tion estimates based on limited data samples, as discussed alsoviding, in both cases, by the total number N of (test) trials available
in an explicit comparison with an alternative procedure by Go-(see Rolls et al. 1997b).
lomb et al. (1997) . The procedure provides a good correction
(õ5% error) when the number of trials for each stimulus is largerInformation measures
than the number of bins R into which the neuronal responses are
discretized [when decoding is used, this number of bins reducesInformation values can be extracted from the joint probability
to S (see preceding text; Golomb et al. 1997; Panzeri and Trevestables P(s, s*) as from any other probability table P(s, r) . Again,
1996)] . With respect to the correction based on another proce-when the probability table has to be estimated as the frequency
dure, which we used in previous investigations (Tovee and Rollstable of a limited data sample, it becomes crucial to evaluate the
1995; Tovee et al. 1993) , one should note that, while in severaleffects of limited sampling on the information estimate. Because
cases it yields information values that are close to those obtainedwhen considering the actual responses of several cells r turns into
with the present procedure, it cannot be applied to compute thea multidimensional quantity (a vector, r) , the minimum number
stimulus-specific information I (s, R ) . This is one case, therefore,of trials required to sample sufficiently the response space becomes
in which it was essential to develop a novel procedure to correctvery large [it grows exponentially with the dimensionality of that
for limited sampling.space, i.e., the number of cells considered (Treves and Panzeri

With respect to the sensitivity to limited sampling of the different1995)] . This is what rules out, in the case of populations of more
measures of the information carried by an ensemble of cells, it isthan very few cells, any attempt to evaluate directly the quantity
worthwhile to note the following. In deriving PF

N, each responseI(S, R) and forces us to resort to the (standard) procedure of
is used to predict its stimulus. Although sP spans only S valuesderiving from the original frequency table of stimuli and responses
compared with the very large number of possible (multidimen-an auxiliary table, of actual and potential stimuli, the latter being
sional) rate responses, the auxiliary table is otherwise unregular-simply functions of the responses spanning a discrete set with a
ized in that each trial of a limited total number produces a relativelyreduced number of elements (equal, that is, to the number of stim-
large ‘‘bump’’ in PF

N(s , sP) . The result of this is that a raw estimateuli) . In general, the information content of the auxiliary table will
of I(S , SP) [which can be denoted as IN(S , SP) to point out thatbe less than that of the original table by an amount that depends
it is obtained from a total of N trials] can still be very inaccurate,on the severity of the manipulation performed. If the decoding is
in particular, overestimated. The correction methods we use, onefficient, that is, if it extracts from the responses nearly all that the
the other hand, are safely applicable when the subtracted termresponses can tell about the stimulus, then, by construction, not
[/IN(S , SP) 0 I(S , SP)] is smaller than Ç1 bit. With the presentmuch information is lost in the decoding step. The fact that a
data, the subtracted term turns out to be safely small except indecoding operation may be a plausible part of the processing pro-
some cases when few cells are considered.duced by the nervous system at some stage adds credibility to

the procedure, which is in any case necessary, of estimating the PR
N, on the other hand, can be conceived of as being more

information carried by several cells only after decoding their re- ‘‘regularized’’ than PF
N because each trial contributes not a rela-

sponses. Two types of auxiliary tables were derived here, called tively large bump to just to one bin sP but smaller additions to
several bins s*. The consequence is that the distortion in the infor-PR

N and PF
N see preceding text.

mation estimate due to limited sampling (small N) is smaller, and
the subtraction of a suitable correction term [IN(S , S*)] 0 I(S ,Information estimates corrected for the limited number of
S *) is enough to produce accurate corrected estimates of informa-trials
tion. The correction term to be used differs from that appropriate
to correct I(S , SP) or I(S , R) , and we refer to Panzeri and TrevesThe procedure introduced so far for estimating information val-
(1996) and to Rolls, Treves, and Tovee (1997b) for details. Hereues, both for single cells [ from the probability table P(s, r)]
it is sufficient to note, again, that I(S , S*) (as best estimated withand for ensembles of cells [ from either the table PF(s , s p) or
the present correction procedure) will in any case tend to a ‘‘true’’PR(s , s*)] must be supplemented by a procedure that corrects the
value that, being based on a regularized probability distribution, israw estimates for their limited sampling biases. In practice, in fact,
less than the value (unmeasurable except with few cells) attainedbecause of the limited number of trials that can be collected, the
by I(S , R) . The same applies to I(S , SP) . In a previous papervarious probability tables are not available, and one can at best
(Rolls et al. 1997b), we have used I(S , S*) as a substitute forapproximate them with frequency tables, e.g., PN(s , r) , computed
I(S , SP) when the latter could not be safely estimated due to limitedon the basis of a (limited) number of trials N . If N is very large,
sampling. In the present work, relatively more data are available,the frequencies should get close to the underlying probabilities,
but we still prefer to report I(S , S*) values, because they are morebut for any finite N there will be a discrepancy, which will result
smooth. In any case, we have calculated the information with bothin an error in the estimated information gain. This error decreases
methods, and the values are very close for the decoding algorithmsas the number of trials for each stimulus increases. Because infor-

mation quantities depend on probabilities not in a linear but in a used in this paper. Residual limited sampling problems were en-
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FIG. 2. Profiles of the response magnitudes (in spikes/
s computed during 500-ms periods) of 5 different cells
shown as a function of where on the walls the monkey was
looking in the horizontal axis (extracted from data binned
in just 64 horizontal bins) .

countered in some cases in which ensembles of few cells with very of information, as we have quantitatively checked at the single cell
low firing activity were considered (essentially because in those level. We then binarize single cell responses by labeling them as
cases on most trials the ensemble firing vectors are equal to the 0 if no spike was emitted during the given time period and as 1 if
null vector, and only the remaining trials effectively convey infor- at least 1 spike was emitted, and thus we represent the response
mation), and to control for them, we used the procedure described by the whole ensemble as a binary response vector. As with C
next. cells, there are only 2C possible responses; it is feasible to collect

as many trials as there are, in practice, different types of response
for up to perhaps five cells (which thus would need 32 trials,Calculation of the information directly from the responses
but only if every possible response actually occurred; in practiceof cells with sparse firing rate distributions
responses where more than 1–2 cells fire are very rare, and the
number of actual outputs is õ10–15). The information analysisA new alternative procedure for information measurement con-
is reliable when the number of trials per stimulus is at least astained in a population of cells developed for use with the low
large as the number of actual responses (see Panzeri and Trevesfiring rates and sparse firing rate distributions characteristic of
1996; Rolls and Treves 1998). With this type of analysis, there ishippocampal cells is introduced next. With such distributions, it
no need for any decoding procedure, and the information can beis possible to consider the responses of single neurons in even

100-ms periods as being binary without losing a significant amount calculated directly from Eq. 2 with the finite sampling correction

TABLE 1. Quantitative measures of the response characteristics of the different hippocampal neurons

Cell I(S, R) Imax I500 a a25 a500 Sp Peak Rate Site Cell Number

av142 0.021 0.134 0.188 0.322 0.04 0.201 0.2 12 DENT 1
av148 0.049 0.535 0.154 0.053 0.004 0.035 0.0 9 CA1 2
av153c1 0.060 0.310 0.277 0.334 0.048 0.190 0.0 9 PSUB 3
av153c3 0.036 0.282 0.216 0.297 0.017 0.179 0.3 9 PHG 4
av180 0.128 0.264 0.153 0.296 0.046 0.230 0.2 12 PHG 5
av181 0.171 0.726 0.282 0.349 0.088 0.298 0.5 24 CA1 6
av191 0.170 0.830 0.488 0.388 0.113 0.346 0.0 24 PHG 7
av192c1 0.159 0.390 0.432 0.229 0.025 0.163 0.0 7.5 PSUB 8
av192c2 0.064 0.518 0.271 0.250 0.012 0.122 0.0 7.5 PSUB 9
av192c2cl2 0.054 0.236 0.361 0.208 0.003 0.049 0.0 7.5 PSUB 10
av197 0.162 0.579 0.312 0.323 0.080 0.338 0.6 18 PSUB 11
av200c1 0.056 0.351 0.162 0.124 0.012 0.135 0.0 4.5 PHG 12
av216 0.056 0.150 0.185 0.242 0.039 0.163 0.0 21 PHG 13
av221 0.144 0.754 0.348 0.310 0.001 0.018 0.2 19.5 PHG 14
av222 0.035 0.122 0.091 0.205 0.024 0.144 0.2 12 CA1 15
av229 0.180 1.057 0.589 0.068 0.083 0.366 0.0 13.5 CA1 16
av232 0.091 0.746 0.332 0.129 0.023 0.125 0.0 18 CA1 17
av273.1 0.241 1.007 0.749 0.399 0.174 0.406 0.0 30.75 PHG 18
av273.2 0.141 0.394 0.604 0.200 0.054 0.239 0.0 21 PHG 19
av296 0.133 0.276 0.376 0.131 0.035 0.176 0.1 18 PHG 20
az033c1 0.150 0.519 0.305 0.206 0.029 0.155 0.0 9 CA3 21
az033c2a 0.127 0.710 0.295 0.141 0.023 0.105 0.0 9.2 CA3 22
az033c2acl2 0.028 0.141 0.199 0.098 0.021 0.124 0.0 2.5 CA3 23
az034c1cl1 0.042 0.278 0.389 0.211 0.037 0.171 0.0 7.25 CA3 24
az102 0.012 0.098 0.108 0.072 0.009 0.090 0.0 1.0 CA1 25
az103 0.335 1.359 0.535 0.332 0.086 0.370 0.0 17.5 PSUB 26

Mean 0.109 0.491 0.323 0.227 0.043 0.189 0.1 13.2

Note: a is calculated from 64 horizontal 1 16 vertical spatial bins in which there were ¢1 s of data in 500-ms runs. I(S, R) is the mutual information
available in 100 ms about spatial view. Imax is the maximum information about any of the 16 stimuli or views available in 100 ms. I500 is the mutual
information available in 500 ms about the spatial view. Sp, spontaneous rate; DENT, dentate gyrus; PHG, parahippocampal gyrus; PSUB, parasubiculum.
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applied. The advantage of this procedure is that when it can be these neurons showed a significant differential response to the
applied, it is more direct because it does not involve a decoding different walls in one-way analyses of variance. For a 500-ms
step and thus allows the relation between the number of cells period, the average information provided by these cells about
and the information available to be specified accurately for small which location the monkey was looking at was 0.32 bits. Thus
numbers of cells. there was a reasonable amount of information available in the

firing rates of these neurons in a 100- and a 500-ms period
R E S U L T S about spatial location ‘‘out there,’’ even though the firing rates

of the neurons were low, with a mean peak response to theAn example of the firing rate of a hippocampal pyramidal
most effective spatial location of 13.2 spikes/s (compared withcell when the monkey was walking round the environment
a spontaneous rate of 0.1 spikes/s). Although I(S , R) may notis shown in Fig. 1A. The inner set of four rectangular boxes
appear to be high, it should be remembered that this neuronalshow where the monkey looked on the four walls. (The top
information measure is equivalent to the average of all theof each wall is furthest from the center.) The outer set of
information contained in the responses to the individual stimulifour boxes again represent the four walls, but in these, a
(corrected for the minor differences in the number of trials).spot indicates where the cell fired. It is clear that the cell
If many of the stimuli (walls) evoke a similar neuronal re-has a spatial view field located mainly on wall 3. To show
sponse, then the average information from the neuronal re-in more detail how the firing rate of the neuron varied as a
sponse about which stimulus was being looked at is low.function of where the monkey was looking, we show in Fig.

To understand the representation of individual stimuli by1B that for the same cell, the firing rate (gray scale calibra-
individual cells, the specific information I(s) available intion, bottom) projected onto a representation of the four
the neuronal response about each stimulus s in the set ofwalls of the room.
stimuli S was calculated for each cell. If the neuron re-The profiles of the response magnitudes of a sample of
sponded to one of the stimuli (1 of the half walls) and notthe different cells plotted as a function of where on the walls
to any other, then the maximum information contained whenthe monkey was looking in the horizontal axis are shown in
that effective stimulus was shown would be 4 bits,Fig. 2. The values for any horizontal point were averaged
and of the other stimuli close to 0 bits (in fact, log2(16/15) Åover the vertical values. (Further examples of similar plots
0.09 bits) . The maximum information values Imax of thefor different cells are provided by Georges-François et al.
different neurons about any one stimulus are shown in Fig.1998; Robertson et al. 1998; Rolls et al. 1997a; where full
3B and Table 1, again calculated for 100-ms periods of thedetails of the response properties of hippocampal spatial
neuronal response. The majority for 100 ms are in the rangeview cells in primates are provided). From Fig. 2 it can be
0.2–0.8 bits. The mean value of Imax for the different cellsseen that each cell typically has its spatial view field centered
was 0.49 bits for 100 ms. For a 500-ms period, the meanat a different position relative to the other cells. It also can
value of Imax was 1.2 bits (see Table 1).be seen that the view fields are typically quite extensive

horizontally, with mean half-amplitude widths of 0.9 walls.
Sparseness of the representation

Information available in the responses of single neurons
The data above indicate that the encoding of information

about spatial view in this population of neurons is notA histogram showing the values of I(S , R) (the average
information in the responses of a cell about the stimulus set achieved by very finely tuned neurons, that is, the representa-

tion is likely to be achieved by distributed encoding. Towithin 100-ms periods) for each of the 26 cells in the two
monkeys for which sufficient data were collected for the analy- quantify this, the measure a of the sparseness of the represen-

tation was calculated. The sparseness measure indicates theses described here is provided in Fig. 3A. Most of the neurons
had values for I(S , R) in the range 0.05–0.2 bits, with the length of the tail of the distribution of neuronal responses

to the stimuli such that low values indicate high selectivityaverage across the population of neurons being 0.11 bits. All

FIG. 3. A : histogram showing the values of I(S ,
R) ( the average information in the responses of a
cell about the stimulus set in a 100-ms period) for
each cell; here spatial views were binned into a total
of 16 stimuli. B : maximum information values Imax

of the different neurons about any 1 stimulus avail-
able in a 100-ms period.
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FIG. 4. A : distribution of the number of spikes emitted by a CA3 neuron in 100-ms periods. B : distribution of the number
of spikes emitted by a CA3 neuron in 500-ms periods.

to one or a few of the stimuli in the set, and a value of 0.5 than or in the order of size of the synaptic and membrane
time constants. For comparison, we show also the spikeif the neurons had binary firing rates (e.g., firing or not)

would indicate equal (firing) responses to half the stimuli count distribution calculated during 500-ms time periods in
Fig. 4B for the same CA3 cell. The averages across theand no response to the other half. Sparseness was calculated

in the manner described in METHODS. population of 26 cells of the firing rate distributions are
shown in Figs. 5 and 6. These distributions were calculatedTable 1 shows the sparsenesses a of the neuronal responses

(sampled in 500-ms periods) in the 64 horizontal1 16 vertical by normalizing the mean firing rate of each cell to 1, so that
cells could be combined.spatial locations into which the walls of the room were divided.

It can be seen that none of the neurons had very low values To obtain a quantitative measure to reflect this distribu-
tion, the sparseness of the neuronal responses was calculatedfor a , that is, the coding was relatively distributed. The mean

value for a was 0.22, indicating somewhat distributed encoding. from 25- and 500-ms time periods of the neuronal response
[i.e., using the formulaFigure 4A shows the distribution of the number of spikes

emitted by a typical neuron in 100-ms periods. This is of
a Å S ∑

iÅ1,n

(ri /n)D 2Y ∑
iÅ1,n

(r 2
i /n)interest, because it shows the statistics of the spike arrivals

that might be expected in other hippocampal neurons receiv-
ing from the recorded neuron, in a time that is already longer where ri is the firing rate in the i th 25-ms period of the

FIG. 6. Average across the population of cells of the number of spikesFIG. 5. Average across the population of cells of the number of spikes
emitted during 100-ms periods. To compute this average distribution, the emitted during 500-ms periods. To compute this average distribution, the

firing rate of each cell was normalized to 1.0 by dividing it by its mean.firing rate of each cell was normalized to 1.0 by dividing it by its mean.
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FIG. 7. A : values for the average information,
I(S , S *) , available in the responses of different
numbers of these neurons on each trial, about which
of the 16 stimuli ( i.e., quarters of walls) is being
looked at. , Euclidean distance decoding algo-
rithm was used for estimating the relative probabil-
ity of posited stimuli s * ; – – – , dot product result.
Twenty cells were recorded from the same (av)
animal. B : percent correct predictions based on the
same data used in A. C : values of I(S , R) extracted
by means of the direct procedure ( – – – ) are com-
pared with the values of I(S , S *) calculated using
the Euclidean distance decoding algorithm ( ).
Values were estimated from 100-ms periods. Val-
ues for the average information from cells in 4
different subregions are shown (CA3 and CA1, hip-
pocampal pyramidal cell fields; PSUB, presubicu-
lum; PHG, parahippocampal gyrus) .

neuronal activity measured duringú5 min while the monkey estimates of the time constant of the fast excitatory synapses,
considering also dendritic delays (which, even combined,explored the environment] . Note that this is a measure of

the sparseness of the spike count distribution, that is, of the are not beyond 25 ms). It can be seen that the sparseness
of the representation described in this way takes a smallnumber of time bins with 0, 1, 2 spikes, etc. irrespective of

how the firing correlates with spatial view. The interest of value. The mean value of a25 for the neurons in Table 1 was
0.04. This period was chosen because it is in the order ofthis measure is that it summarizes the statistics of the spikes

received by a neuron in short time periods down to as low as size of the time constants of the hippocampal synaptic events
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FIG. 8. A : results from the same set of cells
analyzed as in Fig. 7A but with a shorter time for
each trial ( i.e., period within which the eyes are
still and during which the spikes emitted by each
cell are counted) of 25 ms. B : values of I(S , R)
for the same set of cells as in Fig. 7C extracted by
means of the direct procedure ( – – – ) are com-
pared with the values of I(S , S *) calculated using
the Euclidean distance decoding algorithm ( ).
Values were estimated from 25-ms periods. Values
for the average information from cells in 4 different
subregions are shown.

which set the time scale of the operation of the system (see was chosen because it is of the order of time over which a
new memory might be learned, and thus this is the sparsenessfurther Treves 1993). Essentially because over 25 ms these

cells behave roughly as binary units, the result is that on value which will set the sparseness of the synaptic weight
vector on a neuron that might be laid down for a singleaverage they fire (usually just 1 spike) during 4% of all 25-

ms periods in the recording session. The results of a similar memory. This value of sparseness, denoted here as a500 , has
a mean value of 0.19, close to the value a calculated fromcalculation for spike sparseness values based on 500-ms time

periods are shown in Table 1 as a500 . The 500-ms period the mean responses to each spatial view. Note that this does

J588-7/ 9k27$$ap34 03-12-98 19:54:20 neupal LP-Neurophys



ROLLS, TREVES, ROBERTSON, GEORGES-FRANÇOIS, AND PANZERI1808

lated irrespective of spatial view, as in a500 , or from the
mean responses to each view, as in a . Either way, this is
roughly the value that might be expected to influence the
number of memories stored in an associative network (see
Rolls and Treves 1998).

Information available from an ensemble of these neurons

The values for the average information, I (s , s * ) , avail-
able in the responses of different numbers of these neurons
on each trial, about which of the 16 stimuli ( i.e., walls ) is
being looked at, are shown in Fig. 7A for 100-ms periods.
The Euclidean distance decoding algorithm was used for
estimating the relative probability of posited stimuli s *. The
same data produced the percent correct predictions reported
in Fig. 7B. It can be seen that the information rises approxi-

FIG. 9. Percentage of the information carried by the different levels of mately linearly with population size from its baseline level
firing rate for this population of 26 cells. Average rate for each cell was (which is zero for 0 cells ) for the first four to five cellsnormalized to 1 so that the cells could be combined. Firing rate measure

and after that increases less rapidly. The percent correcton the abscissa is the firing rate expressed as a fraction of the mean rate
for the cell. also rises approximately linearly with population size from

its baseline (chance) level (which is 100/S Å 6.25 for the
percent correct ) . The 20 cells were, of course, all from thenot imply that on average these cells fire 19% of all 500-

ms periods because over 500 ms they do not behave as binary same animal (av ) and used 40 trials from every cell in
almost all cases. (For 25-ms analysis, 40 trials were avail-units. Rather, the sparseness value obtained is a measure of

the tail of the firing rate distribution computed over 500 ms, able for every cell for every stimulus; the number of trials
was 2% less than ideally required for 100-ms time win-and it turns out not to matter very much whether it is calcu-

FIG. 10. Information I(s , R) available in
the response of the set of 26 hippocampal
neurons about each of the stimuli in the set
of 16 stimuli, each of which was a different
part of space (abscissa) , with the firing rate
of the neuron to the corresponding stimulus
plotted as a function of this on the ordinate.
– – – , mean firing rate of the cell. Average
rate of the cell on the ordinate was normal-
ized to 1 so that the cells could be combined.
Stimulus-specific information is divided by
the mean number of spikes emitted by the
cell on the abscissa and has the meaning of
the information about a particular stimulus
available in 1 mean interspike interval of the
cell. , how the information per spike
about a stimulus is related to the firing rate
of a neuron to that stimulus in the limit of
short time windows (see Rolls et al. 1997c).
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dows, but we checked that the small number of random response to the same stimulus. Figure 10 shows that firing
rates above, or below, the mean convey information.missing trials that needed replication had a negligible effect

on the information analysis.) The sites at which these 26 cells were recorded are shown
in Fig. 11. Ten were in the hippocampal pyramidal cell fieldsTo investigate to what extent the information does rise

linearly, we applied the direct information measurement pro- CA3 or CA1. They were probably hippocampal pyramidal
cells, as shown by the large amplitude action potentials, verycedure possible with binary rate distributions and compared

the results with the Euclidean distance decoding procedure low spontaneous firing rates in this type of experiment (mean
0.2 spikes/s) , and relatively low peak firing rates (meanin Fig. 7C. The analysis was performed separately for neu-

rons in different parts of the hippocampal formation and 10.5 spikes/s) (cf. Feigenbaum and Rolls 1992). Sixteen
were in the overlying cortical areas or paracortical areas,separately for each animal. The comparison shows that the

increase of information is closely linear with the number of including the parahippocampal gyrus, which connect the hip-
pocampus to other cortical areas. The mean spontaneouscells when using the direct information measurement (which

is possible for °5 cells) and that the measurement based firing rates of these cortical neurons in this type of experi-
ment was 0.1 spikes/s, and the peak firing rates had a meanon decoding (in this case ED decoding) underestimates the

information for more than about four cells. The underestima- of 15.1 spikes/s.
tion probably is related to the sparseness of the firing rate
distributions of hippocampal neurons, which makes the de- D I S C U S S I O N
coding step lose some of the information. The conclusion is
that the somewhat less than linear increase in information The neurophysiological results described here show that

the information about where (on the walls of the room) theapparent in Fig. 7A for more than about four cells is probably
just due to the inefficiency of the decoding procedure when monkey was looking increases approximately linearly with

the number of cells in the ensemble. This shows that theapplied to these low firing rate neurons. (The fact that the
increase of information with the direct information measure- information conveyed by a hippocampal neuron is roughly

independent of that carried by other hippocampal neurons.ment method may appear to be close to supralinear in the
number of cells is probably that with 5 cells the finite sam- Put another way, the number of stimuli, in this case locations

in space, that can be encoded by a population of neurons inpling correction for the limited number of trials is operating
at its limit, given that the number of trials per stimulus this part of the brain increases approximately exponentially

as the number of cells in the sample increases. That is, thewas 40 and the dimensionality of the binary response space
is 32.) log of the number of stimuli increases approximately linearly

as the number of cells in the sample is increased. This is inThe results from the same set of cells analyzed with dot
product decoding also are shown in Fig. 7, A and B. The contrast to a local encoding scheme (of ‘‘grandmother’’

cells) , in which it is the number of stimuli encoded thatreason that the information is zero and the percent correct
is at chance with one cell for DP decoding is, obviously, increases linearly with the number of cells in the sample. The

conclusion is that one of the attractive potential properties ofthat then the dot product of the test trial vector of cell re-
sponses with any of the average response vectors to the distributed encoding, that the number of stimuli that can be

encoded increases exponentially with the number of cells instimuli is essentially meaningless.
The multiple cell information analysis for the same set of the representation, is expressed by this population of hippo-

campal neurons. A mechanism that has been suggested tocells analyzed as in Fig. 7 but with a shorter time for each trial
(i.e., period within which the eyes are still, and the number of contribute to this is the pattern separation (or orthogonaliza-

tion) performed by the dentate granule cells operating as aspikes is measured) of 25 ms are shown in Fig. 8.
It is possible to show how much of the information is competitive network and by the mossy fiber projection to

the CA3 cells (Rolls 1989; Rolls and Treves 1998; Trevescarried by the different levels of firing rate, given the mean
firing rates elicited by each stimulus and the corresponding and Rolls 1992).

That an exponentially increasing capacity with an increaseI(s , R) values that have been the subject of this paper. The
result is shown in Fig. 9 for 100 ms, averaged over the 26 in cell number is a potential property of a distributed repre-

sentation can be seen clearly from the following example.cells. It is of considerable interest that much of the informa-
tion was available from the firing rates that were below the Consider the number of stimuli that can be encoded by a

population of C neurons without noise. If local encoding ismean (normalized to 1 in Fig. 9) , related to the fact that
low firing rates were very common. The mode of this distri- used (i.e., a single neuron specifies the stimulus, that is

grandmother cell encoding), and the representation is binarybution is between 0.0 and 0.25 with respect to the mean
firing rate across all stimuli. This is linked to the fact that (e.g., the neuron is either active or not) , then C different

stimuli can be encoded. (One different neuron is on forinformation is a relative measure. This results in some infor-
mation at very low rates relative to the mean rate. Given the each stimulus.) If distributed encoding is allowed, then 2C

different stimuli can be encoded. (2C is the number of differ-high probability of very low rates for hippocampal cells, the
total information conveyed by low rates is thus high, as ent combinations of C binary variables.) The fundamental

question addressed in this paper is the extent to which theshown in Fig. 9. It is also shown in Fig. 9 that there is a
dip in the information available in those rates that are near hippocampal system can use the potential advantage of dis-

tributed representations to encode a very large (exponen-the mean rate for each cell. This is related to the fact that
stimuli that evoke a firing rate response close to the mean tially large) number of different stimuli in a population of

neurons. The potential advantage only will be usefully real-across all stimuli carry little information. This point is made
more explicitly in Fig. 10, which shows the information ized to the extent that each member of the population of

neurons has different responses to each stimulus in a set ofavailable about each stimulus in relation to the firing rate
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FIG. 11. Hippocampal and parahippo-
campal sites at which different spatial view
cells were recorded. Cells are numbered, and
cross-refer to Table 1.

stimuli (with, e.g., different combinations of neurons firing efficient (ED) algorithm. This is an indication that the brain
could use the exponentially increasing capacity for encodingto each stimulus) and to the extent that the responses of a

neuron on a given trial are not too noisy. That is, the standard stimuli as the number of neurons in the population increases.
The details of the decoding that may be used by actualdeviation of the responses of a neuron to the same stimulus

on different trials must not be too great, and the responses neurons do matter but in a quantitatively minor way (both
the ED and DP algorithm require an estimate of the Euclid-to different stimuli must be reliably different to each other.

Evidence on this issue only can be obtained by examining ean ‘‘length’’ of the firing rate vector, an operation that
could be performed by feedforward inhibition, but then usethe response properties of real neurons in the brain. The

results described in this paper show the extent to which this quantity in slightly different ways) . For example, in an
autoassociative memory [which we believe may be imple-these conditions are met, that is that the neurons do have

sufficiently different view field centers (see Fig. 2) , and the mented in the hippocampus (see Rolls 1989; Treves and
Rolls 1994)] , which computes effectively the dot productfiring of each neuron is sufficiently reliable and independent

(Figs. 7 and 8). on each neuron between the input vector and the synaptic
weight vector, most of the information available would inThe results described here also show that a reasonable

amount of information about spatial location is provided fact be extracted (see Rolls and Treves 1990, 1998; Treves
and Rolls 1991).by primate hippocampal neurons. For example, the average

information provided by these cells about which location the The new procedure for information measurement con-
tained in a population of cells developed for use with themonkey was looking at was 0.32 bits, and the mean across

cells of the maximum information conveyed about which low firing rates and sparse firing rate distributions described
here, which calculates the information directly from binar-location was being looked at was 1.20 bits, measured in a

period of 0.5 s. In a study performed in rats, the information ized neuronal response vectors, confirmed with precision
that the information available did increase linearly with thefrom an ensemble of hippocampal place cells about the rat’s

location has been estimated as on average Ç0.3 bits in a number of cells in an ensemble. The algorithm can be used
when there are as many trials as there are actual responseperiod of 0.5 s (Treves et al. 1996).

Two different algorithms were used to estimate which of vectors, in practice up to about five cells. It is very helpful
from a methodological point of view, because it allows inde-the average response vectors (1 for each stimulus) most

closely matched the vector of cell responses being produced pendent confirmation of the operation of the decoding proce-
dures used in the other algorithms.by a test stimulus. The ED algorithm was found to be more

powerful and appropriate given the low firing rates of hippo- One of the important points made here is that because
the representational capacity of a set of neurons increasescampal neurons than decoding methods based on Gaussian

or Poisson firing rate distributions. In addition, it was found exponentially, neurons in the next brain region would each
need to sample the activity of only a reasonable numberthat with another neurally plausible algorithm (the DP algo-

rithm) that calculates which average response vector the neu- (e.g., a few hundred) of what might be a much larger cell
population and yet still obtain information about which ofronal response vector was closest to by performing a normal-

ized dot product (equivalent to measuring the angle between many stimuli (e.g., locations in space) had been seen. This
would be useful for recall of information from the hippocam-the test and the average response vector) , the same generic

results were obtained with similar percent correct and only pus via backprojection pathways to the neocortex (see
Treves and Rolls 1994).a 15–20% reduction in information compared with the more
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Comparison of the results shown in Figs. 7 and 8 (with shown in Figs. 5 and 6 indicate that the neurons very rarely
produce more than one spike in 100 ms (and do so with the100- and 25-ms periods, respectively) highlight the value of

having large numbers of neurons of the type described here. very low probability of 0.01 in a time period of 25 ms), so
that on the time scale of operation of these neurons in theThey make it clear that part of the value is that information

can be made available very rapidly about which stimulus is hippocampus, it may be appropriate to consider them as
binary variables. Now, to maximize the number of memoriespresent if the responses of a population of neurons, rather

than just a single neuron, are considered. Moreover, the fact stored in an autoassociative attractor neural network such as
that which could be implemented by the hippocampal CA3that the representation provided by each neuron is apparently

independent to that provided by other neurons means that neurons, it can help to have sparse and binary representations
(Rolls 1989, 1995; Rolls et al. 1997d; Treves and Rollsthe information is available very rapidly from whichever

subset of neurons is taken. This rapid availability of informa- 1991, 1994). However, we note that the time scale of the
operation of the synaptic modification involved in learningtion from a ‘‘population’’ of neurons is one factor that contri-

butes to the very rapid processing of information in the brain, may be considerably longer, on the order of 100 ms or
more, partly because of effects such as the relatively slowfor even in a short time much information is available from

the population, allowing the information from one cortical unbinding of glutamate from the N-methyl-D-aspartate re-
ceptor. Another factor lengthening the time scale may bearea to be extracted very rapidly by the next (see further

Rolls 1994; Rolls and Tovee 1994; Rolls and Treves 1998). the behavior, in that the animal may process the data for
times on the order of ¢0.5 s, for example, by looking forA point that certainly merits further investigation is the

effect of generating pseudosimultaneous trials (as performed ¢0.5 s at a location in space where an object is present. This
may mean that the actual sparseness of the firing relevant tohere) , rather than recording simultaneously from large popu-

lations of cells (Wilson and McNaughton 1993). Particularly the synaptic representation laid down for a memory may be
more like the value a500 , which was on average 0.19. Indeed,in exploring fine points such as the presence of trial-to-

trial correlations in the responses, it is helpful to have some the storage capacity in depending on the synaptic matrix and
not the instantaneous firing rates of the neurons is likely toevidence about simultaneously recorded cells in the primate

hippocampus, to check, for example that the simultaneously reflect this value of the sparseness or, even more, the value
of a shown in Table 1, which is 0.22 for these spatial neuronsrecorded cells do convey independent information, consis-

tent with the linear increase in information with the number considered alone. Effectively, we interpret the attractors as
set up by the learning that might occur over the order ofof cells in the ensemble described here. In fact, we do have

preliminary evidence that this is indeed the case in the pri- ¢0.5 s, so that what is important is the sparseness a rather
than the sparseness of the neuronal spikes arriving overmate hippocampus, in that six of the cells described here

were recorded as three pairs and with this simultaneous re- 25-ms periods. The network as a whole, when operating as
an attractor network as has been suggested for CA3, thencording still conveyed information that was largely indepen-

dent. In particular, with simultaneous recording the informa- would be working in the ‘‘low firing rate regime’’ and with
rather sparse representations (Rolls and Treves 1998).tion increased linearly with the number of cells as found

for the nonsimultaneous recordings. Further, the information The representation in the hippocampus may be more
sparse than that in the temporal visual cortical areas wherevalues obtained from the three cell pairs when they were

analyzed as simultaneously recorded were on average 4% values of 0.6 are common (Rolls and Tovee 1995). This
may allow more information to be represented in the patternmore than the values when they were treated as not being

simultaneously recorded. (The treatment for nonsimultane- of firing of temporal cortical visual neurons than in hippo-
campal neurons. It has been suggested that this differenceous analysis involved simply randomly shuffling the order

of the trials for each stimulus.) The redundancy (see Rolls in the type of coding is that the more distributed encoding
in the visual cortex allows much information to be repre-and Treves 1998) was on average 0% for the simultaneously

recorded analysis and 4% for the nonsimultaneously re- sented about what is being seen and that the more sparse
binary encoding in the hippocampus allows many memoriescorded analysis. The result indicates that the cells do carry

almost independent information. We are continuing with si- to be stored at the cost of less information per memory than
would be possible with a more distributed representation.multaneous recordings and will provide a full report on si-

multaneously recorded cells in the primate hippocampus in Indeed, the amount of information present in a hippocampal
memory now can be estimated. If each CA3 spatial neuronfuture. However, we note further evidence that the conclu-

sion described here is reasonable, in that in analyses of cells represents on average 0.3 bits of information about spatial
location in 500 ms, if (conservatively) 5% of hippocampalrecorded simultaneously in the rat, the information provided

by different hippocampal cells is also independent, given that CA3 neurons represented spatial information, and if the neu-
rons are tested in a sufficiently large spatial world with theshuffling the rat data to produce nonsimultaneously recorded

virtual trials makes little difference to the information analy- neurons coding nonredundantly (see further Rolls et al.
1997b), then the information about spatial location in anyses (Treves et al. 1996).

These experiments also showed that the representation one hippocampal memory in 1,000,000 CA3 neurons might
be as high as 5%∗1,000,000∗0.3 bits Å 15,000 bits. If aprovided by these hippocampal neurons, is very sparse, with

a25 Å 0.04. Twenty-five milliseconds is the order of the time neuron downstream had access to the outputs of, say, 1,000
of these CA3 cells, it would ‘‘see’’ then 15 bits of spatialscale of the time constants of synaptic transmission. If only

0 or 1 spike was produced by a neuron in this time period, information, which is still a considerable amount (they allow
precise discriminations to be made between 215 É 30,000then we could treat the neuronal system as a network of

binary neurons rather than as one with graded firing rates. locations) .
Many spatial view (or ‘‘space’’ or ‘‘view’’) neurons haveThe probability distribution of different numbers of spikes
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been found in this series of experiments in the locomoting of the CA3 neurons (see Rolls 1989, 1995; Rolls and Treves
1998; Treves and Rolls 1994).monkey (for a description of 40 spatial view cells, see Rolls

et al. 1997a). No place cells have been found that responded
This research was supported by Medical Research Council Grantbased on where the monkey was, as contrasted with where

PG8513579 and the Human Frontier Science Program. P. Georges-Françoisit was looking in the environment. These cells in the primate
is supported by European Community Marie Curie Research Training Granthippocampus are thus unlike place cells found in the rat
ERBFMBICT961279.

(Muller et al. 1991; O’Keefe 1979). Primates, with their Present address of A. Treves: S.I.S.S.A.-Programme in Neuroscience,
highly developed visual and eye movement control systems, Via Beirut 2-4, 34013 Trieste, Italy.
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