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Abstract

We describe a model of invariant visual object recognition in the brain that incorporates feedback biasing effects of top–down

attentional mechanisms on a hierarchically organized set of visual cortical areas with convergent forward connectivity, reciprocal

feedback connections, and local intra-area competition. The model displays space-based and object-based covert visual search by

using attentional top–down feedback from either the posterior parietal or the inferior temporal cortex (IT) modules, and interac-

tions between the two processing streams occurring in V 1 and V 2. The model explains the gradually increasing magnitude of the

attentional modulation that is found in fMRI experiments from earlier visual areas (V 1, V 2) to higher ventral stream visual areas

(V 4, IT); how the effective size of the receptive fields of IT neurons becomes smaller in natural cluttered scenes; and makes pre-

dictions about interactions between stimuli in their receptive fields.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Vision is a sufficiently complex problem that it bene-

fits from a computational neuroscience approach that is

closely linked to empirical neurophysiological investi-

gations. A number of different approaches to issues such

as invariant object recognition, and visual attention, are

described by Rolls and Deco (2002). In the research

described here, we describe a neurophysiologically based

model for invariant visual object recognition and
attention in primates that combines a feature hierarchy

approach to invariant object recognition (exemplified by

VisNet) (Elliffe, Rolls, & Stringer, 2002; Rolls, 1992;

Rolls & Milward, 2000; Stringer & Rolls, 2000, 2002;

Wallis & Rolls, 1997; Wallis, Rolls, & Foldiak, 1993)

with a model of spatial and object attention that

incorporates backprojections for top–down attentional

effects, and interactions between a dorsal �where’ and
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ventral �what’ visual stream (Deco, 2001; Deco & Lee,

2002; Deco & Rolls, 2002; Deco & Zihl, 2001; Rolls &
Deco, 2002). This model is defined in a neurodynamical

framework, i.e. the underlying dynamics is founded on

biophysical mathematical models of single neurons, with

the neurons interconnected to form networks which

correspond to particular brain areas. In this paper we

focus in particular on the locally implemented but

gradually increasing global character of the competition

that is produced in a hierarchical network with con-
vergent forward connectivity from area to area; and on

the interaction between space-based and object-based

attentional top–down feedback processes.

VisNet is a four-layer feedforward network with

convergence to each part of a layer from a small region

of the preceding layer, with competition between the

neurons within a layer, and with a trace learning rule to

help it learn transform invariance. The trace rule is a
modified Hebbian rule, which modifies synaptic weights

according to both the current firing rates and the firing

rates to recently seen stimuli (Rolls & Stringer, 2001).

This enables neurons to learn to respond similarly to the

gradually transforming inputs it receives, which over the
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short term are statistically likely to be about the same

object. This kind of hierarchical feature analysis system

has the capability of representing the spatial relations

between features, by incorporating fixed (non-dynamic)

feature combination neurons which respond to a com-

bination of a small number of features that are in the

correct spatial relation to each other (Elliffe et al., 2002).

The attentional model of Deco (2001) consists of a set
of modules with feedforward and also feedback con-

nections between each module; a neurodynamical for-

mulation expressed in terms of mean field theory that

allows a �biased competition’ model of attention to

operate; and a set of modules representing the �what’
pathway with another set of modules that can interact

through V 1 that represent the �where’ pathway. Atten-

tion then appears as an emergent effect 1 related to the
dynamical evolution of the whole network to a state

where the constraints given by the stimulus and the

external attentional object or spatial bias are satisfied

(Corchs & Deco, 2002; Deco & Lee, 2002; Deco & Zihl,

2001; Rolls & Deco, 2002).

The aim of the research described here, and the new

model presented, is to combine the feedforward feature

hierarchy approach used by VisNet, and the multi-
modular attentional architecture with both forward and

�top–down’ backprojections, into a single unifiedmodel. 2

First, we show that the computational principles of

both models are captured in the combined model. Sec-

ond, the model accounts for the gradually increasing

magnitude of the attentional modulation that is found in

fMRI experiments from earlier visual areas (V 1, V 2) to
higher ventral stream visual areas (V 4, IT). Third, the
model shows how the effective size of the receptive fields

of IT neurons becomes smaller in natural cluttered

scenes. Fourth, the model also makes new experimental

predictions about two types of interaction between

stimuli in the receptive fields of IT neurons, which are

due to competition at early vs. late stages of processing

in the ventral stream. This single integrated model will

provide a basis for new aspects of the operation of the
cortical visual system to be explored, because it incor-

porates several aspects of the cortical architecture of the

visual systems found in the brain, including the hierar-

chies present in the ventral or �what’ visual system, and

the backprojections in the ventral and dorsal visual
1 Emergent effects are those effects that are not a scaling up or

adaptation of anything its parts do. The dynamical evolution and the

global attractors of the cortical networks are genuine emergent effects

because they are only due to the connections between each part.
2 Previous computational studies have already considered the role

of feedforward bottom–up effects in visual attention (Itti & Koch,

2001). We stress here the role of biassed competition mechanisms for

spatial and object-based attention involving interactions between the

dorsal visual stream and the ventral visual stream through early

cortical areas, and therefore the role of top–down vs. bottom–up

attentional interactions.
systems which enable these streams to interact. This

approach is very different from some earlier models of

visual attention based on saliency maps which used only

feedforward processing, directed attention only to the

location of salient features in the environment, and did

not address the issue of object identification (Itti &

Koch, 2000). The present model in contrast shows how

spatial and object representations in separate dorsal and
ventral processing streams in the brain could interact

using top–down processing to model both identification

of a location given an object search target, and identi-

fication of an object given a spatial location as a search

cue. Moreover, the model described here includes a

model of invariant object recognition, and is a full

dynamical model which enables the timing in different

modules during global settling of the whole network
taking into account the constraints given to be investi-

gated.
2. The combined neurodynamical model of ‘what’ and
‘where’ visual stream processing

2.1. Neurophysiological background

2.1.1. The dorsal and ventral paths of the visual cortex

A widely accepted description of the many cortical

areas (Felleman & Van Essen, 1991; Rolls & Deco,

2002; Ungerleider & Mishkin, 1982; Van Essen, Felle-
man, DeYoe, Olavarria, & Knierim, 1990) is into a

ventral or �what’ stream that runs from V 1, to V 2, V 4,
and the inferior temporal cortical areas TEO and TE

that computes properties of objects such as shape and

colour; and a dorsal or �where’ stream that runs from

V 1, to V 2, V 3, MT and the medial superior temporal

area MST, and on to the posterior parietal cortex (PP),

including area 7a (Ungerleider & Mishkin, 1982).
Neurons in the temporal cortical visual areas typically

have large translation-invariant receptive fields, and

have distributed encoding of shapes, objects or faces in

which the spatial arrangement of the features can be

important (Desimone, Albright, Gross, & Bruce, 1984;

Logothetis, Pauls, & Poggio, 1995; Perrett, Rolls, &

Caan, 1982; Rolls, 1984, 1992, 2000; Rolls & Deco,

2002; Tovee, Rolls, & Azzopardi, 1994). On the other
hand, neurons in the parietal lobe are frequently sen-

sitive to the location of the stimulus on the retina or

with respect to the animal’s head (Andersen, Snyder, &

Bradley, 1997). Neurons in the posterior parietal cortex

(PP) show an enhanced response to attended targets

within their receptive fields, even when no eye move-

ments are made (Bushnell, Goldberg, & Robinson,

1981), and there is correspondingly suppression of re-
sponses to unattended items (see Rolls & Deco, 2002).

Consistent with this latter finding, Posner, Walker,

Friedrich, and Rafal (1984) showed that damage to the
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parietal lobe in humans can block the ability to move

the attentional focus away from the presently attended

location to other objects in the visual field. Haxby et al.

(1994) found consistent evidence for a segregation of

processing streams in humans. They showed in a pos-

itron emission tomography (PET) study that when

humans performed a face-matching task activation was

observed in the inferior and temporal cortex and in
the occipital lobe. On the other hand, when humans

performed a spatial task (involving face rotation),

activation was detected in the parietal and occipital

cortex.

We include in the computational model we describe

this what–where segregation by providing a set of

�ventral stream’ modules that correspond approximately

to visual areas V 1, V 2, V 4, IT, and a set of �dorsal
stream’ modules that correspond approximately to V 1,
V 2 and PP.

2.1.2. The biased competition hypothesis of attention and

visual search

The dichotomy between parallel and serial opera-

tions in visual search has been challenged by psycho-

logical models suggesting that all types of search task

can be solved by a single parallel competitive mecha-

nism. Duncan (1980) and Duncan and Humphreys

(1989) have proposed a scheme that integrates both

attentional modes (parallel and serial) as an instantia-

tion of a common principle. They explain searches for
conjunctions of features as well as for single features on

the basis of the same operations involving grouping

between items in the visual field, and matching of those

items or groups to a memory template of the target. The

matching process leads to support of items with fea-

tures consistent with the template and inhibits those

with different features. This process would operate

for all stimulus features: colour, shape, location, etc.
This process of feature selection suggests that subjects

utilize top–down information (from the feature-based or

object memory template) independently of stimulus

location in space. The attentional theory of Duncan and

Humphreys (1989) proposes that there is both parallel

activation of a target template (from multiple items in

the field), and competition between items (and between

the template and non-matching items), so that, finally,
only one object is selected. There is evidence suggest-

ing that parallel competitive processes in the brain

are responsible for human performance in visual selec-

tive attention tasks (Duncan, Humphreys, & Ward,

1997).

A number of neurophysiological experiments

(Chelazzi, 1998; Chelazzi, Miller, Duncan, & Desi-

mone, 1993; Miller, Gochin, & Gross, 1993; Moran &
Desimone, 1985; Motter, 1993, 1994a, 1994b; Reynolds

& Desimone, 1999; Rolls & Tovee, 1995; Spitzer,

Desimone, & Moran, 1988) have been performed
suggesting biased competition neural mechanisms

which are consistent with the theory of Duncan and

Humphreys (1989) (i.e., with a role for a top–down

memory target template in visual search). The biased

competition hypothesis proposes that multiple stimuli

in the visual field activate populations of neurons that

engage in competitive interactions. Attending to a

stimulus at a particular location or with a particular
feature biases this competition in favour of neurons

that respond to the location of or the features in the

attended stimulus. This attentional effect is produced

by generating signals in areas outside the visual corti-

cal areas which are then fed back to extrastriate areas,

where they bias the competition in such a way that

when multiple stimuli appear in the visual field, the

cells representing the attended stimulus win, thereby
suppressing cells representing distracting stimuli

(Desimone & Duncan, 1995; Duncan, 1996; Duncan &

Humphreys, 1989).

In addition, there is consistent evidence for similar

mechanisms in human extrastriate cortex at the macro-

scopic level of functional magnetic resonance imaging

(fMRI) (Kastner, De Weerd, Desimone, & Ungerleider,

1998; Kastner, Pinsk, De Weerd, Desimone, & Unger-
leider, 1999). These studies have shown that multiple

stimuli in the visual field interact in a mutually sup-

pressive way when presented simultaneously but not

when presented sequentially, and that spatially directed

attention to one stimulus location reduces the mutually

suppressive effect. They also revealed increased activity

in extrastriate visual cortex in the absence of visual

stimulation when subjects covertly directed attention to
a peripheral location where the onset of visual stimuli

was expected. This increased activity in extrastriate

visual cortex was related to a top–down bias of neural

signals in favour of the attended location, which was

presumably derived from frontal and parietal cortical

areas.

Our model implements biased competition at the

microscopic level of neuronal pools and at the meso-
scopic level of visual areas in a multi-modular archi-

tecture with �what’ and �where’ streams (Corchs & Deco,

2002; Deco & Zihl, 2001). At the neuronal pool level,

dynamical competition is implemented by introducing

mutual inhibition using pools of inhibitory neurons.

Intermodular competition and mutual biasing result

from the interaction between modules corresponding to

different visual areas. In the model, feature attention
biases intermodular competition between V 1, V 2, V 4
and IT, whereas spatial attention biases intermodular

competition between V 1, V 2, V 4, and PP. The model

allows simulation of single cell, fMRI and neuropsy-

chological findings, and produces results which are

consistent with the experimental observations of biased

competition effects (Corchs & Deco, 2002; Deco & Zihl,

2001; Rolls & Deco, 2002).
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2.2. A large-scale neurodynamical model of the visual

cortex

The neurophysiological findings described above,

wider considerations on the possible computational

theory underlying hierarchical feedforward processing

in the visual cortical areas with layers of competitive

networks trained with a trace learning rule (Elliffe et al.,
2002; Rolls, 1992; Rolls & Deco, 2002; Wallis & Rolls,

1997), and the analysis of the role of attentional feed-

back connections and interactions between an object

and a spatial processing stream (Deco, 2001; Deco &

Lee, 2002; Deco & Zihl, 2001; Rolls & Deco, 2002),

lead to the neurodynamical model that we present here

for invariant hierarchical object recognition and selec-

tive visual attention. The equations for the model are
provided in Appendix A, and the following text ex-

plains the model. Within each module a competitive

network is implemented by local lateral inhibitory

connections, and the modules are connected hierarchi-

cally by convergent feedforward connections. A modi-

fied Hebb-like learning rule that incorporates a

temporal trace of each cell’s previous activity enables

the neurons to learn transform invariant responses. The
model implements biased competition by assuming

mutually feedforward and feedback biasing between

different modules corresponding to different brain

areas. The different modules are organized in a hier-

archical structure incorporating the overall architec-

tural arrangement of the visual cortical areas with

ventral and dorsal pathways, which can interact in V 1
and V 2. The model is fully autonomous and each
component of its functional behaviour is explicitly de-

scribed in a complete mathematical framework (pro-

vided in Appendix A), which at the microscopic level

corresponds to the neurodynamical equations derived

by Wilson and Cowan (1972) for a pool of spiking

neurons.

Fig. 1 shows the overall systems-level diagram of the

multi-area neurodynamical architecture used for mode-
lling the primate visual cortical areas. The system is

essentially composed of five modules or networks

structured such that they resemble the two known main

visual processing streams of the mammalian visual

cortex. Information from the retino-geniculo-striate

pathway enters the visual cortex through area V 1 in the

occipital lobe and proceeds into two processing

streams. The occipital-temporal stream leads ventrally
through modules V 2, V 4 to IT (the inferior temporal

cortex), and is mainly concerned with object recogni-

tion, independently of position and scaling. The oc-

cipito-parietal stream leads dorsally into PP (the

posterior parietal complex) and is responsible for

maintaining a spatial map of an object’s location and/

or the spatial relationship of an object’s parts as well as

for moving the spatial allocation of attention.
The ventral stream consists of the four modules V 1,
V 2, V 4 and IT. This part of the architecture is similar to

VisNet in architecture and training (Elliffe et al., 2002;

Rolls & Deco, 2002; Rolls & Milward, 2000; Wallis &

Rolls, 1997), except that backprojections are incorpo-

rated, and the numbers of neurons are reduced for

simplicity. These different modules allow combinations

of features or inputs that occur in a given spatial
arrangement to be learned by neurons, ensuring that

higher-order spatial properties of the input stimuli are

represented in the network (Elliffe et al., 2002). This is

implemented via convergent connections to each part of

a layer from a small region of the preceding layer, thus

allowing the receptive field size of cells to increase

through the ventral visual processing areas, as is ob-

served in the primate ventral visual stream (see Fig. 2).
An external top–down bias, coming it is postulated

from a short-term memory for shape features or objects

in the more ventral part of the prefrontal cortex area

v46, generates an object-based attentional component

that is fed back down through the recurrent connections

from IT through V 4 and V 2 to V 1. The V 1 module

contains hyper columns, each covering a pixel in a

topologically organized model of the scene. Each hyper-
column contains orientation columns of orientation-

tuned (complex) cells with Gabor filter tuning at octave

intervals to different spatial frequencies. V 1 sends visual

inputs to both the ventral and dorsal streams, and in

turn receives backprojections from each stream, pro-

viding a high-resolution representation for the two

streams to interact. This interaction between the two

streams made possible by the backprojections to V 1 is
important in the model for implementing attentional

effects. In the brain, there may be contributions to this

interaction from further cross-links between the pro-

cessing streams, occurring for example in V 2, but the

principle of the interaction is captured in the model by

the common V 1 module. The V 2, V 4 and IT modules

each receive inputs from a small region of the preceding

module, allowing the receptive field sizes of the neurons
to increase gradually through the pyramidal structure of

the network (see Fig. 2). Each of these modules acts like

a competitive network (see Rolls & Deco, 2002; Rolls &

Treves, 1998; Wallis & Rolls, 1997) which enables

neurons to learn to respond to spatially organized

combinations of features detected at the preceding

stage, thus helping to solve the binding problem (Elliffe

et al., 2002), and also implementing a certain degree of
localized competitive interaction between different tar-

gets. All the feedforward connections are trained by an

associative (Hebb-like) learning rule with a short-term

memory (the trace learning rule) in a learning phase in

order to produce invariant neuronal responses (Rolls,

1992; Wallis & Rolls, 1997). The backprojections be-

tween modules, a feature of cortical connectivity (Rolls

& Deco, 2002; Rolls & Treves, 1998) are symmetric and



Fig. 1. Cortical architecture for hierarchical and attention-based visual perception. The system is essentially composed of five modules structured

such that they resemble the two known main visual paths of the mammalian visual cortex. Information from the retino-geniculo-striate pathway

enters the visual cortex through area V 1 in the occipital lobe and proceeds into two processing streams. The occipital-temporal stream leads ventrally

through V 2–V 4 and IT (inferior temporal visual cortex), and is mainly concerned with object recognition. The occipito-parietal stream leads dorsally

into PP (posterior parietal complex), and is responsible for maintaining a spatial map of an object’s location. The solid lines with arrows between

levels show the forward connections, and the dashed lines the top–down backprojections.
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reciprocal in their connectivity with the forward con-

nections. The average strength of the backprojections is

set to be a specified fraction of the strength of the for-

ward connections (by a single parameter in the model)

so that the backprojections can influence but not

dominate activity in the input layers of the hierarchy
(Renart, Parga, & Rolls, 1999a, 1999b). Intramodular

local competition is implemented in all modules by

lateral local inhibitory connections between a neuron

and its neighboring neurons via a Gaussian-like

weighting factor as a function of distance (see Appendix

A). The width of these Gaussian decays for V 1, V 2, V 4
and IT are denoted as rV 1, rV 2, rV 4, rIT.
The inputs to module V 1 of the network are provided

by neurons with simple cell-like receptive fields. This

input filtering enables real images to be presented to the

network. Following Daugman (1988) the receptive fields

of these input neurons are modelled by 2D-Gabor

functions. The Gabor receptive fields have five degrees
of freedom given essentially by the product of an ellip-

tical Gaussian and a complex plane wave. The first two

degrees of freedom are the 2D-locations of the receptive
field’s centre; the third is the size of the receptive field;

the fourth is the orientation of the boundaries separat-

ing excitatory and inhibitory regions; and the fifth is the

symmetry. This fifth degree of freedom is given in the



Fig. 2. Hierarchical convergent forward projection in the ventral �what’ path of the visual system achieved by a pyramidal multi-layer network,

corresponding to the brain areas V 1, V 2, V 4, TEO and TE (or IT), with convergence to each part of a layer from a small region of the preceding

layer. The right part of the figure shows the different types of representation that may be built by implementing the biased competition hypothesis at

each stage of the system. The attentive bias may correspond to recurrent attentional feedback connections, and the local competition between the

neurons within a layer, may correspond to lateral local inhibitory connections. The local character of the competition within layers reveals itself

effectively as a gradually increasing global competition between objects and/or parts of objects at the retina when deeper ventral layers are considered.

Abbreviations: LGN, lateral geniculate nucleus; TEO posterior inferior temporal cortex; TE (or IT) inferior temporal cortex.
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standard Gabor transform by the real and imaginary

part, i.e. by the phase of the complex function repre-

senting it, whereas in a biological context this can be
done by combining pairs of neurons with even and odd

receptive fields. This design is supported by the experi-

mental work of Pollen and Ronner (1981), who found

simple cells in quadrature-phase pairs. Even more,

Daugman (1988) proposed that an ensemble of simple

cells is best modelled as a family of 2D-Gabor wavelets

sampling the frequency domain in a log-polar manner as

a function of eccentricity. Experimental neurophysio-
logical evidence constrains the relation between the free

parameters that define a 2D-Gabor receptive field (De

Valois & De Valois, 1988). There are three constraints

fixing the relation between the width, height, orienta-

tion, and spatial frequency (Lee, 1996). The first con-

straint posits that the aspect ratio of the elliptical

Gaussian envelope is 2:1. The second constraint postu-

lates that the plane wave tends to have its propagating
direction along the short axis of the elliptical Gaussian.

The third constraint assumes that the half-amplitude

bandwidth of the frequency response is about 1–1.5

octaves along the optimal orientation. Further, we as-

sume that the mean is zero in order to have an admis-

sible wavelet basis (Lee, 1996). The neuronal pools in

our V 1 module complex cells are modelled here by the

power modulus of a 2D-Gabor function sensitive to a
particular location, orientation, symmetry, and spatial

frequency according to the constraints described above.
The V 1 module contains NV 1 � NV 1 hypercolumns,

covering a N � N pixel scene. Each hypercolumn con-

tains L orientation columns of complex cells with K
octave levels corresponding to different spatial fre-

quencies. The cortical magnification factor is explicitly

modelled by introducing more high spatial resolution

neurons in a hypercolumn the nearer this hypercolumn

is to the fovea. The density of the fine spatial resolution

neurons across the visual field decreases in the model

according to a Gaussian function centered on the fovea.

In other words, in the periphery far from the fovea only
coarse spatial resolution V 1 pools are in the respective

hypercolumn, whereas in regions near to the fovea, the

V 1 hypercolumns include also high spatial resolution

input neurons.

The modules V 2, V 4 and IT consist also of C-
dimensional columns of neuronal pools (i.e., each col-

umn contains C pools) distributed in a topographical

lattice with NV 2 � NV 2, NV 4 � NV 4 and NIT � NIT neurons,
respectively. The connectivity between modules V 1–V 2,
V 2–V 4 and V 4–IT is intended to mimic the convergent

forward connectivity of the cerebral cortex. This con-

nectivity helps to implement the gradually increasing

receptive field size as one proceeds up the cortical hier-

archy, and the formation of neurons that respond to

combinations of inputs with features in a defined spatial

configuration (Elliffe et al., 2002; Rolls, 1992; Wallis &
Rolls, 1997). The connections to neuronal pools in a

column in an upper module are limited to neuronal



Table 1

Network dimensions

Dimensions Radius

IT 1· 1 · 2 1

V 4 4· 4 · 2 1

V 2 16 · 16 · 2 2

V 1 32 · 32 · 16 16

Retina 256· 256 –
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pools in a column in the immediately connected lower

module that are within a certain radius around the focal

point of connection (see Fig. 1). We denote these radii at

each level by RV 1, RV 2 and RV 4. This connectivity is

reciprocated by the backprojections.
Table 1 shows the dimensions utilized in the present

implementation. We used N ¼ 128, NV 1 ¼ 128, K ¼ 8,

L ¼ 2, NV 2 ¼ 16, NV 4 ¼ 4, NIT ¼ 1, RV 1 ¼ 16, RV 2 ¼ 2,

RV 4 ¼ 1, RIT ¼ 1, C ¼ 2.

The dorsal stream includes a PP module which re-

ceives connections from V 1 and V 2, and which has re-

ciprocal backprojections (see Fig. 1). This causes the

effective resolution of PP neurons to be coarser than the
highest resolution V 1 neurons. An external top–down

bias to the PP module, coming from a spatial short-term

memory and denoted as prefrontal cortex area d46 in

the model, generates a spatial attentional component.

The backprojections from PP influence the activity in the

V 2 and V 1 modules, and thus can indirectly influence

activity in the ventral stream modules. A lattice of

NPP � NPP nodes provides topological organization in
module PP. Each node on the lattice corresponds to the

spatial position of each pixel in the input image (i.e.,

NPP ¼ N ). Each of these assemblies monitors the acti-

vities from columns in V 1 and V 2 via a Gaussian

weighting function that relates topologically homolo-

gous locations. Local competition in PP is implemented

via local lateral inhibitory connections between a neuron

and its neighboring neurons weighted with a Gaussian-
like factor. The width of the Gaussian decay is denoted

rPP.

The system operates in two different modes, the

learning mode and the recognition mode. During the

learning mode the synaptic connections between V 1–V 2,
V 2–V 4 and V 4–IT are trained by means of an associa-

tive (Hebb-like) trace learning rule during a number of

presentations of a given object as it is shifted to neigh-
boring positions in the visual field (Wallis & Rolls,

1997). This learning rule utilizes the spatio-temporal

constraints placed upon the behaviour of �real-world’
objects to learn about natural object transformations.

By presenting consistent sequences of transforming ob-

jects the cells in the network can learn to respond to the

same object when it is presented in different locations, as

described by F€ooldi�aak (1991), Rolls (1992) and Wallis
and Rolls (1997). The learning rule incorporates a

decaying trace of previous cell activity and is henceforth
referred to simply as the �trace’ learning rule (see Eq.

(A.25)). This learning paradigm is intended in principle

to enable learning of any of the transforms tolerated by

inferior temporal cortex neurons (Rolls, 1992; Wallis &

Rolls, 1997). To clarify the reasoning behind this point,

consider the situation in which a single neuron is

strongly activated by a stimulus forming part of a real

world object. The trace of this neuron’s activation will
then gradually decay over a time period in the order of

0.5 s. If, during this limited time window, the net is

presented with a transformed version of the original

stimulus then not only will the initially active afferent

synapses modify onto the neuron, but so also will the

synapses activated by the transformed version of this

stimulus. In this way the cell will learn to respond to

each appearance of the original stimulus. Making such
associations works in practice because it is very likely

that within short time periods different aspects of the

same object will be being inspected. The cell will not,

however, tend to make spurious links across stimuli that

are part of different objects because of the unlikelihood

in the real world of one object consistently following

another (Wallis & Rolls, 1997). Various biological bases

for this temporal trace have been advanced. One is the
continuing firing of neurons for as long as 100–400 ms

observed after presentations of stimuli for 16 ms (Rolls

& Tovee, 1994), which could provide a time window

within which to associate subsequent images. Main-

tained activity may potentially be implemented by

recurrent connections between cortical areas (Rolls &

Deco, 2002). A second is the binding period of gluta-

mate in the NMDA channels, which may last for 100 or
more ms, and may implement a trace rule by producing

a narrow time window over which the average activity at

each presynaptic site affects learning (F€ooldi�aak, 1992;

Rolls, 1992).

During learning, the backprojections are disabled,

partly for simplicity, partly to assist rapid learning,

partly because before any training has occurred, back-

projections would introduce only noise into the system,
and partly in recognition of the fact that during any new

learning, new information being fed into the system,

rather than what is already stored, should dominate the

activity of cortical areas (Rolls & Deco, 2002; Rolls &

Treves, 1998). Consistent with these points, backpro-

jections in the cerebral cortex make synapses on the

apical parts of the dendrites of pyramidal cells, making

it likely that when forward inputs which make synapses
closer to the cell body are active, then the backprojec-

tion effects are shunted (Rolls & Deco, 2002; Rolls &

Treves, 1998). After the forward connections have been

trained using the trace rule, the values of the backpro-

jection synapses are set to be the same values as the

forward connections between any two neurons, scaled

by a single scaling factor. Further details are provided in

Appendix A.
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During the recognition mode the forward and the

backprojection pathways operate as a dynamical system

that is implemented by a mean-field set of differential

equations, as described in Appendix A. External top–

down bias from the prefrontal cortex can be introduced

in order to model the effects of object or spatial atten-

tion. The full mathematical description of the model is

given in Appendix A. The model has the ability to
simulate covert visual search, that is search without eye

movements in which given an object attentional bias

applied to the IT module the network settles in the PP

module at the correct spatial location; and given a

spatial attentional bias cue in the PP module the net-

work identifies the correct object in the IT module (see

Rolls & Deco, 2002). The model also can simulate

invariant object recognition, in the way described pre-
viously (Elliffe et al., 2002; Rolls & Deco, 2002; Rolls &

Stringer, 2001; Wallis & Rolls, 1997). However, in this

paper we describe new issues that the combined model

can address, as described next.
3. Operation of the model: simulations of fMRI and

single-cell data

We describe in the following sections simulations

performed with the model to test the model against

experimental results and to provide an explanation of

fMRI and single-cell findings. The experiments show

how spatial and object-based attentional inputs applied

at the top of the spatial or object processing stream

produce attentional effects throughout both processing

streams by virtue of the feedback pathways and the
interactions that occur through V 1 and V 2, and how

competition though implemented locally gradually has a

more global character as one proceeds up the ventral

stream hierarchy. First, we explain the gradually

increasing magnitude of the attentional modulation

from earlier visual areas (V 1, V 2) to higher ventral

stream areas (V 4, IT) as found in fMRI experiments.

Second, we explain the variation of the effective size of
receptive fields of IT neurons in natural cluttered scenes.

3.1. fMRI data: gradually increasing attentional and more

global lateral inhibitory modulation along the ventral

stream

Functional magnetic resonance imaging (fMRI)

studies show that when multiple stimuli are present

simultaneously in the visual field, their cortical repre-

sentations within the object recognition pathway inter-

act in a competitive, suppressive fashion (Kastner et al.,

1998, 1999). Directing attention to one of the stimuli can
counteract the suppressive influence of nearby stimuli.

The model we describe here is able to simulate and ac-

count for these results. In the first experimental condi-
tion the authors (Kastner et al., 1998, 1999) showed the

presence of suppressive interactions among stimuli pre-

sented simultaneously (SIM) within the visual field in

the absence of directed attention (UNATT). The com-

parison condition was sequential (SEQ) presentation.

(In the SEQ condition, each of the complex image

stimuli was shown separately in one of four locations. In

the SIM condition, the stimuli appeared together in all
four locations. The presentation time was 250 ms, fol-

lowed by a blank period of 750 ms, on average, in each

location. A 15 s block design was used. An attentional

modulation index (AMI) was defined as AMI ¼
½ATT�UNATT�

ATT
where ATT¼ the fMRI response in the at-

tended condition. The AMI was computed separately

for the sequential and simultaneous conditions.) In a

second experimental condition they showed that spa-
tially directed attention increased the fMRI signal more

strongly for simultaneously presented stimuli than for

sequentially presented stimuli. Thus, the suppressive

interactions were partially cancelled out by attention.

This effect was indicated by a larger increase of the

AMISIM in comparison to AMISEQ caused by attention.

The results further showed that attention had a greater

effect (the AMI was higher) for higher (IT, V 4 and V 2)
than for earlier (V 1) visual areas, as shown in Fig. 3a. In

a third experimental condition the effects of attention

were investigated in the absence of the visual stimuli.

The dynamical evolution of neural activity at the level

of what occurs in different cortical areas as measured by

fMRI signals can be simulated in the framework of the

present model by integrating the activity of neuronal

pools in a given simulated cortical area over space and
time. The temporal integration was set so that it has the

temporal resolution of fMRI experiments. In this sec-

tion we describe simulations of the fMRI signals from

V 1, V 2, V 4, and IT under the experimental conditions

defined by Kastner et al. (1999).

In the simulations, as in the experiments, images were

presented in four nearby locations in the upper right

quadrant. In all the simulations described in this paper,
the background image was of a complex natural scene

(similar to that in Fig. 5.18 of Rolls & Deco, 2002); and

the stimuli consisted of letters of the alphabet made

up of smaller letters (similar to those in Fig. 10.3 of

Rolls & Deco, 2002). The neurodynamics (as defined by

the differential equations that specify the interactions

between neurons and between modules provided in

Appendix A) were solved using the Euler method with a
dt ¼ 1 ms (note that this means that 1000 iterations

represents 1 s of time in the fMRI measurements). Two

attentional conditions were simulated: an unattended

condition, during which no external top–down bias from

prefrontal areas was present (i.e., IPP;Aij was set to zero

everywhere), and an attended condition which started

(in an expectation period) 10 s before the onset of visual

presentations and continued during the subsequent 10 s



Fig. 3. Attentional modulation index (AMI) in visual cortex with sequentially and simultaneously presented stimuli. The AMI normalizes the

attentional effects to the activity evoked in the corresponding attended condition. The effect of attention on a particular visual area is evident as the

difference between the AMI observed by sequentially and simultaneously presented stimuli. Higher ventral stream visual cortical areas show more

attentional modulation.
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block. This attended condition corresponded to pro-

viding a spatial cue applied to the PP (parietal) module,

and testing for identification of the correct object in the

IT (inferior temporal cortex) module. The spatial

attentional cue was implemented by setting IPP;Aij equal to

0.07 for the locations associated with the lowest left

stimulus and zero elsewhere. Fig. 3b shows the results of

our simulations. The simulations show a gradually
increasing magnitude of attentional modulation from

earlier visual areas (V 1, V 2) to higher ventral stream

visual areas (V 4, IT), which is similar to that found in

the experiments of Kastner et al. (1999). This attentional

modulation is location-specific, and its effects are medi-

ated by the PP attentional biassing input having an effect

via the backprojections in V 2 and V 1, from which the

effect is fed up the ventral stream in the forward direc-
tion to reach the IT module. The gradually increasing

influence of attentional modulation from early visual

cortical areas to higher ventral stream areas is a conse-

quence of the gradually increasing global character of

the competition between objects and/or parts of objects

as one ascends through the ventral visual system, and

the locally implemented lateral inhibition becomes

effectively more global due to the convergence in the
forward direction in the hierarchical pyramidal archi-

tecture of the ventral stream illustrated in Fig. 2. For

clarification, the competition in the IT module is global,

in that just two neurons reflect the two possible objects

in the scene, but in a more biologically realistic imple-

mentation with distributed representations the global

competition would occur because neurons in the dis-

tributed representation would be intermingled in a non-
topologically based representation, and would thus

interact.

The simulation data describe quite well the qualita-

tive behaviour found in the experiments. The quantita-

tive differences found between the simulated and

empirical data are due to the numerical values of the
parameters used in the model. Closer results could be

obtained by adjusting these parameters. However, our

intention is primarily to provide a qualitative analysis of

the underlying processes that give rise to the experi-

mental fMRI results.

3.2. The receptive field size of IT neurons to stimuli

presented in complex natural backgrounds

Translation invariance is an important property of

visual processing in object recognition. Inferior tempo-
ral visual cortex neurons that respond to specific objects

or faces show considerable translation invariance, not

only under anesthesia (Gross, Desimone, Albright, &

Schwartz, 1985), but also in the awake behaving primate

(Tovee et al., 1994). These neurons have large receptive

fields when a single object is presented in a blank

background. In most cases the responses of the neurons

were little affected by which part of the face was fixated,
and the neurons responded (with a greater than half-

maximal response) even when the monkey fixated 2�–5�
beyond the edge of a face that subtended 8�–17� at the
retina. Moreover, the stimulus selectivity between faces

was maintained this far eccentrically within the receptive

field.

If more than one object is present on the retina, it was

found that the mean firing rate across a sample of
anterior inferior temporal cortex cells to a fixated

effective face with a non-effective face in the parafovea

(centred 8.5� from the fovea) was 34 spikes/s. On the

other hand, the average response to a fixated non-

effective face with an effective face in the periphery was

22 spikes/s (Rolls & Tovee, 1995). Thus these cells gave a

reliable output about which stimulus is actually present

at the fovea, in that their response was larger to a fixated
effective face than to a fixated non-effective face, even

when there were other parafoveal stimuli effective for the

neuron. Thus the neurons provide information biassed
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towards what is present at the fovea, and not equally

about what is present anywhere in the visual field.

Recently, Rolls, Aggelopoulos, and Zheng (2004) (see

also Rolls & Deco, 2002) investigated how information

is passed from the inferior temporal cortex (IT) to other

brain regions to enable stimuli presented in complex

natural scenes to be selected for action. They analyzed

the responses of single and simultaneously recorded IT
neurons to stimuli presented in complex natural back-

grounds. In one situation, a visual fixation task was

performed in which the monkey fixated at different

distances from the effective stimulus. In another situa-

tion the monkey had to search for two objects on a

screen, and a touch of one object was rewarded with

juice, and of another object was punished with a drop of

saline. In both situations neuronal responses to the
effective stimuli for the neurons were compared when

the objects were presented in the natural scene or on a

plain background. It was found that the overall response

of the neuron to objects was sometimes a little reduced

when they were presented in natural scenes, though the

selectivity of the neurons remained. However, the main

finding was that the magnitudes of the responses of the

neurons typically became much less in the real scene
the further the monkey fixated in the scene away from

the object, that is, the receptive field sizes of the neurons

became smaller in natural scenes. This effect is shown in

Fig. 4 (after Rolls & Deco, 2002). Rolls et al. (2004)

showed that the receptive fields were large (78�) with a

single stimulus in a blank background, and were greatly

reduced in size (to 22�) when presented in a complex

natural scene. They also showed that the receptive fields
were smaller in complex scenes if the object was not the
Fig. 4. Firing of a temporal cortex cell to an effective stimulus presented eithe

in degrees at which the monkey was fixating away from the effective stimulu

2003).
target of attention than when it was being searched for,

although the effect of attention was much smaller in a

complex natural scene than it was when tested as has

been usual in studies of attention in the past with objects

shown on a blank screen. In the most recent experiments

it has been found with smaller objects that the receptive

field can shrink to approximately the size of an object

(Rolls et al., 2003).
Rolls et al. (2004) and Rolls and Deco (2002) pro-

posed that this reduced translation invariance in natural

scenes helps an unambiguous representation of an object

which may be the target for action to be passed to the

brain regions which receive from the primate inferior

temporal visual cortex. It helps with the binding prob-

lem, by reducing in natural scenes the effective receptive

field of at least some inferior temporal cortex neurons to
approximately the size of an object in the scene.

In this section, we develop a computational hypo-

thesis that can account for these effects in the theoretical

framework of our neurodynamical model. We trained

the network described above with two objects, and used

the trace learning rule in order to achieve translation

invariance. In a first experiment we placed only one

object on the retina at different distances from the fovea
(i.e., different eccentricities relative to the fovea). This

corresponds to the blank background condition. In a

second experiment, we also placed the object at different

eccentricities relative to the fovea, but on a cluttered

natural background (a forest scene from the �still images

collections’ at www.visionscience.com).

Fig. 5 shows the average firing activity of the inferior

temporal cortex neuron specific for the test object as a
function of the position of the object on the retina rel-
r in a blank background or in a natural scene, as a function of the angle

s. The task was to search for and touch the stimulus (after Rolls et al.,

http://www.visionscience.com


Fig. 5. Average firing activity of an inferior temporal cortex neuron as

a function of eccentricity from the fovea, in the simulation. When the

object was in a blank background (solid line), large receptive fields are

observed because of the translation invariance of inferior temporal

neurons. The decay is mainly due to the magnification factor imple-

mented in V 1. When the object was presented in a complex cluttered

natural background (dashed line), the effective size of the receptive

field of the same inferior temporal neuron was reduced because of

competitive effect between the object features and the background

features within each layer of the ventral stream.
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ative to the fovea (eccentricity). In both cases relatively

large receptive fields are observed, because of the

translation invariance obtained with the trace learning
rule and the competition mechanisms implemented

within each layer of the ventral stream. (The receptive

field size is defined as the width of the receptive field at

the point where there is a half-maximal response.)

However, when the object was in a blank background,

larger receptive fields were observed. The decrease in

neuronal response as a function of distance from the

fovea is mainly due to the effect of the magnification
Fig. 6. Influence of object-based attentional top–down bias from prefrontal

the case of an object in a blank (solid line) or a cluttered (dashed line) backgro

in order to compare the neuronal activity as a function of the eccentricity. W

receptive field was observed. When attentional object bias was introduced (b),

was slightly reduced.
factor implemented in V 1. On the other hand, when the

object was in a complex cluttered background, the

effective size of the receptive field of the same inferior

temporal cortex neuron shrinks because of competitive

effects between the object features and the background

features in each layer of the ventral stream. In particu-

lar, the global character of the competition expressed in

the inferior temporal cortex module (due to the large
receptive fields and the local character of the inhibition,

in our simulations, between the two object specific

pools) is the main cause of the reduction of the receptive

fields in the complex scene.

We also studied the influence of object-based atten-

tional top–down bias on the effective size of an inferior

temporal cortex neuron for the case of an object in a

blank or a cluttered background. To do this, we re-
peated the two simulations but now considered a non-

zero top–down bias coming from prefrontal area 46v

and impinging on the inferior temporal cortex neuron

specific for the object tested. Fig. 6 shows the results. We

plot the average firing activity normalized to the maxi-

mum value to compare the neuronal activity as a func-

tion of the eccentricity. When no attentional object bias

is introduced (a), a shrinkage of the receptive field size is
observed. When attentional object bias is introduced (b),

the shrinkage of the receptive field due to the complex

background is slightly reduced. Rolls et al. (2004) also

found that in natural scenes, the effect of object-based

attention on the response properties of inferior temporal

cortex neurons was relatively small. They found only a

small difference in the receptive field size or firing rate in

the complex background when the effective stimulus was
selected for action, vs. when it was not. In the frame-

work of our model, the reduction of the shrinkage of the

receptive field is due to the biasing of the competition in
area 46v on the effective size of an inferior temporal cortex neuron for

und. The average firing activity was normalized to the maximum value

hen no attentional object bias was introduced (a), a reduction of the

the reduction of the receptive field size due to the complex background
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the inferior temporal cortex layer in favour of the spe-

cific IT neuron tested, so that it shows more translation

invariance (i.e., a slightly larger receptive field). The

increase of the receptive field of an IT neuron, although

small, produced by the external top–down attentional

bias offers a mechanism for facilitation of the search for

specific objects in complex natural scenes.
3.3. The effective receptive field size of IT neurons in

scenes with a blank background and a second distracting

object

In this section, we analyze a set of experiments where

we placed two objects, a target and a distractor, in a

blank background, in order to study the influence of a

single distractor object on the receptive field of an IT

neuron specific for the target object. The target object,

to which the monitored IT neuron specifically responds,

is placed on one side of the fovea at different eccen-

tricities in order to follow the decay of the average
firing rate of the corresponding IT neuron as a function

of the distance from the fovea. The distractor object is

placed on the other side of the fovea at a fixed location

D� from the fovea. Fig. 7 shows the results of this

simulation. The average firing rate of an IT neuron

specific for the target object is plotted as a function of

the position of the target relative to the fovea. The

different curves correspond to different locations
D ¼ 15, 25, 30, 40 and 45 of the distractor object on the

other side of the fovea. The corresponding D-value is

shown for each curve. The single target object case (i.e.,

without a distractor) is also plotted (upper curve �one
Fig. 7. The average firing rate of an IT neuron specific for the target

object is plotted as a function of the position of the target relative to

the fovea. The different curves correspond to different locations D¼ 15,

25, 30, 40 and 45 of the distractor object on the other side of the fovea.

The corresponding D-value is attached at each curve. The single target

object case (i.e., without a distractor) is also plotted (upper curve �one
object’). The size of the receptive field for the target object (curve

decay) decreases with decreasing distance of the distractor object from

the fovea.
object’). The size of the receptive field for the target

object (shown by the decrease in the respective plot)

decreases with decreasing distance of the distractor

object from the fovea. This can be interpreted mainly as

an effect of the global character of the local imple-

mented competition at the inferior temporal cortex

layer due to its large receptive fields and intermingling

of neurons. When a second distracting object is near
the fovea, due to the large magnification factor, one

will have much more activation in the upper layers, and

particularly in the inferior temporal cortex layer, in

neurons associated with features of the distractor ob-

ject. Consequently, much more competition in all lay-

ers, and particularly in the inferior temporal cortex

layer producing a global character to the competition,

causes a stronger suppression of the firing activity of
the target specific IT neuron. This is indicated by a

rapid decay of the activation curve, i.e. in the size of the

corresponding receptive field. Increasing the distance

from the fovea of the location of the distractor object,

again due to the Gaussian decay of the magnification

factor, will again produce lower activity at all levels,

and particularly at the inferior temporal cortex layer,

which results in weak competition that will cause an
increase in the translation invariance at the IT level

(i.e., there will be an increase of the IT receptive field

size corresponding to the target object as a function of

the distance of the distractor object from the fovea).

3.4. Experimental predictions

We present in this section specific new simulation-

based predictions indicating two different type of mod-

ulation of IT neuron receptive fields, namely, one due to

local early layer competition, and the other associated

with more global competition at higher layers in the

ventral stream.

3.4.1. Asymmetric effective receptive field size of IT

neurons in scenes with a blank background and a second

distracting object

One specific prediction of the model can be tested by

repeating the experiment with two objects, but now

placing the second distracting object on the same side

of the fovea where the target object is also located.
With this variation, we tested the influence of compe-

tition effects at earlier layers, where the character of the

competition is much more local, due to the much

smaller receptive fields of neurons in the earlier layers.

Fixing the distractor object at one location corre-

sponding to the eccentricity D, and than testing the

firing rate of an IT neuron associated with the target

object when it is placed at different locations on the
same side of the fovea and on the same line from the

fovea where the distractor object is located (see Fig.

8a), we expect to observe maximal local competition



Fig. 8. (a) Diagrammatic description of condition �same side’ (s) and �other side’ (o) (see text). (b) and (c) For each D, two curves are plotted, one

corresponding to the location of the distractor on the other side of the fovea (condition �other side’), and the other corresponding to the location of

the distractor on the same side of the fovea (condition �same side’). The local activity reduction of the firing rate in the �same side’ condition with

respect to the �other side’ condition was shifted with the shift of D, so that the maximum effect was always observed for a position of the target

around D.
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effects in the cases where both objects are near each

other. Fig. 8b and c show the results of our simulations

for different D. For each D (specified as a number near

the curves), two curves are plotted, one corresponding

to the location of the distractor on the other side of the

fovea (condition �other side’ (o), as in Fig. 7, previous

section), and the other corresponding to the location of
the distractor on the same side of the fovea (condition

�same side’ (s)). First, we remark that local competition

effects at earlier layers (mainly V 1) are present, as ex-

pected. The effect is again an increase of the competi-

tive interaction, now occurring in earlier layers and

only this particularly expressed when the two object are

close to each other, so that the firing activity of the

target neurons (in all layers and particularly in IT) are
reduced. Second, this effect, local activity reduction of

the firing rate in the �same side’ condition with respect

to the �other side’ condition, is shifted with the shift of

D, so that the maximum effect is always observed for a

position of the target around D.
3.4.2. Local inhibitory effects on the effective receptive

field size of IT neurons in a scene with a natural

background and a surrounding grey circle around a small

object

To examine the effects of local neuronal competition

expressed in early layers of the visual processing, we

simulated a condition in which the target object is pre-
sented in a natural complex cluttered background but is

surrounded locally by a blank ring. In this way, we

suppress the local effect of competition at earlier layers

(mainly V 1), because the ring removes the effect of the

competing local activity of the V 1 neurons in the

neighborhood of the target object. Fig. 9 shows the re-

sults of this simulation. The simulation shows an in-

crease of the receptive field size of an IT neuron
responding to the target relative to that measured

without the local blank ring in the complex full back-

ground. The simulation also shows that the receptive

field size predicted in the �blank ring’ complex back-

ground condition is smaller that that corresponding to



Fig. 9. Experimental prediction of receptive field size modulation

when a single target object is surrounded locally by a blank ring. We

predict an increase of the receptive field size of the target IT neuron

relative to that measured with a complex background. On the other

hand the receptive field predicted in the �blank ring’ (hole) is smaller

than that corresponding to the �blank background’ condition.
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the �blank background’ condition. This effect is due to

the global competition effects that are effectively imple-
mented in the higher ventral stream layers (V 4, IT),

where neurons are activated by the natural background

features that are non-local to the target stimulus. (We

note that in a neurophysiological test of this prediction,

in order to prevent the grey circle being interpreted as an

object in its own right, it might be appropriate to use

instead of a grey circle, a region with low contrast.)
3.5. The interaction between the ventral and the dorsal

system: visual search and object recognition

There are two possibilities for running the system.

First, in visual spatial search mode, the spatial location

of an object can be found in a scene by biasing the
system with an external top–down (back projection)

attentional component (from e.g. prefrontal area v46) to

the TE (object) module. This drives the competition in

TE in favour of the pool associated with the specific

object to be searched for. Then, the intermodular

backprojection attentional modulation TE–V 4–V 2–V 1
will enhance the activity of the pools in V 4, V 2 and V 1
associated with the component features of the specific
object to be searched for. This modulation will add to

the visual input being received by V 2 and V 1, resulting
in greater local activity where the features in the topo-

logically organized visual input feature representations

match the feature representations being facilitated by

the top–down attentional backprojections. Finally, the

enhanced firing in a particular part of V 2 and V 1 will

lead to increased activity in the forward pathway from
V 1 and V 2 to PP, resulting in increased firing in the PP

module in the location that corresponds to where the

object being searched for is located. In this way, the
architecture automatically finds the location of the ob-

ject being searched for, and the location found is made

explicit by which neurons in the spatially organized PP

module are firing. Second, in visual object identification

mode, the PP module receives a top–down (backpro-

jection) input (from e.g. prefrontal area d46) which

specifies the location at which to identify an object. The

spatially biased PP module then drives by its backpro-
jections the competition in the V 2–V 1 modules in favour

of the pool associated with the specified location. This

biasing effect in V 1 and V 2 will bias these modules to

have a greater response for the specified location in

space. The shape feature representations which happen

to be present due to the visual input from the retina at

that location in the V 1 and V 2 modules will therefore be

enhanced, and the enhanced firing of these shape fea-
tures will via the feedforward pathway V 1–V 2–V 4–TE
favour the TE object pool that contains the facilitated

features, leading to recognition in TE of the object at the

attentional location being specified in the PP module.

The operation of these two attentional modes is

shown schematically in a simulation using real scenes in

Fig. 10. We use as the target the picture of a monkey

face placed in a natural background (the same back-
ground as that described and used above). For moni-

toring the performance and the dynamics of the network

we plot the population maximum activity of the neuro-

nal pools associated with the target and with the dis-

tracting rest of the world (background) at each point in

time. Fig. 10 shows the results.

In the visual search task, i.e. when the system was

looking for a particular object in a visual scene, the
system functioned in an object attention mode as shown

in Fig. 10a. Object attention was created by introducing

a top–down bias to a particular cell pool in the TE

module corresponding to the target. This ventral TE

module pool backprojected the expected shape activity

patterns over all spatial positions in the early V visual

module through the top–down feedback connections,

through V 4 and V 2. When the image containing the
target object was presented, the early V 1 and V 2 visual

modules whose activities were closest to the top–down

�template’ became more excited because of the interac-

tive activation or resonance between the forward visual

inputs and the backprojected activity from the TE–V 4
modules. Over time, these V 1 hypercolumns with neu-

ronal activities best matching the features in the encoded

object dominated over all the other hypercolumns,
resulting in a spatially localized response peak in the

early V 1 visual module. Meanwhile, the dorsal PP

module was not idle but actively participated by having

all its pools engaged in the competitive process to nar-

row down the location of the target. The simultaneous

competition in the spatial domain and in the object

domain in the two extrastriate modules as mediated by

their reciprocal connections with the early V 1 module



Fig. 10. Neuronal activity in all modules during: (a) visual search in object attention mode when the aim is to find the location of the object receiving

attentional bias and (b) in spatial attention mode when the aim is to perform object recognition for the object at the spatial location receiving

attentional bias. The visual stimuli consisted of a real scene with a target monkey face on a natural background. The maximum population activity of

the neuronal pools corresponding to the identity or location of the target in the scene in all modules was compared against the maximum activity in

pools coding any other locations or background objects.
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finally resulted in a localized peak of activation in the
spatially mapped dorsal stream PP module, with a cor-

responding peak of activity for the object mapped in the

ventral stream IT module, and corresponding activity in

the early V 1 module. This corresponds to finding the

object’s location in the image in a visual search task, or

linking �where with what’, or computing �where’ from
�what’. The temporal evolution of the population max-

imum activity shows the polarization of responses that
started in the ventral stream TE module, and then

backpropagated to the other ventral modules and finally

to the PP module, where the object is localized.

In the object recognition task, the system functioned

in a spatial attention mode as shown in Fig. 10b. Spatial

attention was initiated by introducing a bias to a cell

pool coding for a particular location. When the image

was presented, the spatial bias interacted with the visual
image inputs provided by the V 1–V 2 modules. If the

hypercolumns in the V 1 module �designated’ for spatial
attention contained sufficiently strong neural activities,

the activities in these hypercolumns would interact

synergistically with the biased PP cell pool, so that over

time that pool would dominate over all the other pools

in the PP module, and the activities in the V 1–V 2
modules would be enhanced by the top–down bias from
the PP module pool. This enhancement of neural
activity highlighted the information in the attended

location, effectively gating information in that area of

the V 1–V 2 modules to the V 4–TE modules for recog-

nition (and in this way performing a type of shift

invariance by using an attentional spatial modulation of

early visual cortical processing). When the highlighted

image patch contained one of the trained object classes,

the activity of the TE cell pools started to polarize,
resulting in only one cell pool surviving the competition.

The winner indicated the object class being recognized,

identifying �what was where’, or �what from where’. The

actual simulation results just outlined are shown in Fig.

10b, which shows the neuronal activities in all the

modules during object recognition in the spatial atten-

tion mode. The temporal evolution of the population

maximum activity shows the polarization of responses
that started in the dorsal stream PP module, and then

backpropagated to the other early ventral modules V 1–
V 2 and finally to the V 4 and TE modules, where the

object is recognized.

Fig. 10 shows clearly the different temporal evolution

of the activity in the different cortical modules under

both conditions. We emphasize that the delays are not

due to delays in the transmission between brain areas
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(which we set to 0 in this paper for simplicity), but reflect

instead the time it takes the distributed attractors in

each module to emerge and to influence each other

under both conditions.

In the case of visual search, the information pro-

cessing is parallel, but the dynamics show a clear latency

increase from TE through V 4–V 2–V 1 to PP. On the

other hand, during object recognition, the dynamics
show a clear latency increase from PP through V 1–V 2–
V 4 to TE.
4. Discussion

In this paper, we extend and combine our previous

computational neuroscience-based models for invariant

visual object recognition and attention in order to con-

sider the feedback biasing effects of top–down atten-

tional mechanisms on a hierarchically organized set of

visual areas with a pyramidal architecture, with con-

vergent connectivity, and with local intra-area compe-
tition. In particular, the analysis of the interaction

between space-based and object-based attentional top–

down feedback, and the local and gradually increasing

global character of laterally competing neurons in a

pyramidal network for hierarchical feature integration,

is the main goal of this paper. In order to implement this

we performed here the fusion of two complementary

models, namely the feedforward feature hierarchy net-
work VisNet (Elliffe et al., 2002; Rolls & Deco, 2002;

Rolls & Milward, 2000; Wallis & Rolls, 1997) and the

multi-modular recurrent attentional model of Deco

(2001), Deco and Lee (2002), Deco and Zihl (2001) and

Rolls and Deco (2002).

We have shown that the model we describe does

combine the ability to perform invariant image recog-

nition, which is a property of hierarchical networks such
as VisNet (Elliffe et al., 2002; Rolls & Deco, 2002; Rolls

& Milward, 2000; Stringer & Rolls, 2000, 2002; Wallis &

Rolls, 1997), with attentional phenomena such as object-

cued and space-cued search which can be implemented

in a system with backprojections and a dorsal as well as

a ventral stream of cortical processing (Corchs & Deco,

2002; Deco & Lee, 2002; Deco & Zihl, 2001; Rolls &

Deco, 2002). We emphasize that our modelling of ob-
ject-based and space-based attention is an emergent ef-

fect of the dynamical interaction between different brain

areas. It is based on the coupling between feedforward

connections (e.g., from V 1–V 2, V 4 to IT in the ventral

stream and from V 1–V 2 to PP in the dorsal stream), and

the re-entrant feedback connections (e.g., from IT–V 4–
V 2 to V 1 in the ventral stream and from PP to V 2 and

V 1 in the dorsal stream). Even more, this re-entrant
coupling results in the main modulatory effect of spatial

or object attention being observed in V 1 after a long

latency, of around 120–200 ms (see detailed simulations
in Deco & Lee, 2002). These simulation results are

consistent with the experimental observations of Mar-

tinez et al. (2001) which have shown that attentional

effects in V 1 have a much longer latency (160–260 ms

post stimulus onset) than those in extrastriate cortex

(70–130 ms), suggesting that V 1 activity may be modu-

lated by delayed reentrant feedback from higher visual

areas, as is implemented in our model. We note that
other models of invariant object recognition (see e.g.

review by Riesenhuber & Poggio, 2000) are feedforward

models, and thus cannot address the issue of top–down

processes and attention. We also note that the issue of

feature binding can be dealt with in models of the type

we describe by forming neurons at an early stage of

processing that respond to combinations of feature in

the correct spatial positions, and that if low order fea-
ture combinations are represented, and the natural sta-

tistics of images are taken into account, then the

potential combinatorial explosion can be kept under

control (Elliffe et al., 2002; Rolls & Deco, 2002).

The model accounts for the computational role of the

locally implemented but gradually increasing global

character of lateral inhibition and thus competition be-

tween neurons in the context of actual fMRI and single
cell experiments. The model shows the same effects as

found in fMRI experiments, namely a gradual increase

in the magnitude of the attentional modulation from

earlier visual areas (V 1, V 2) to high level ventral areas

(V 4, IT). The model allows us to understand how this

occurs. The effect arises because the attentional modu-

lation that is applied to the IT module can bias the

system strongly here. The strong bias in IT arises be-
cause the attentional bias has to be applied throughout

the IT module, so that the bias influences neurons that

code for a particular object wherever they are in IT. The

result is that the competition between the neurons rep-

resenting different objects is effectively global in the IT

module. On the other hand, in V 1 the two stimuli are

represented in different parts of a topologically orga-

nized map of visual space, and thus the local competi-
tion implemented by interneurons (neurons in the local

inhibitory pools) will not operate to reduce the activa-

tion produced by one stimulus when the attended object

is elsewhere in the visual field.

The same explanation can account for the relatively

greater magnitude of the attentional modulation effects

observed at the single cell level in IT than in V 1, which is

found in the model, and neurophysiologically in IT, at
least when operating with a plain background. That is,

the large receptive fields for an attended object vs. an

unattended object in IT can be accounted for by strong

effectively global competition effects in IT implemented

by the widespread distribution of the attentional bias in

IT. On the other hand, smaller neuronal competition

effects are found in V 1 because the different objects are

represented in different parts of the topological map,
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and so do not interact within V 1 itself because of the

locality of the lateral inhibition. The model is further

able to make the predictions shown in Figs. 8 and 9 that

because of the local lateral inhibition that operates

within V 1, stimuli close together in visual space will

produce more mutual inhibition, and because of this

effect that is contributed especially by the early visual

cortical areas, neurons even in IT will show greater
mutual interaction if they are close together in visual

space.

The model accounts for the reduction of the receptive

field size of neurons in a complex scene by both global

and local inhibition. In particular, the effectively global

inhibition between the object representations in IT re-

duces the firing rates for most stimuli, but because of the

large magnification factor at the fovea, the object at the
fovea produces the strongest representation in IT. In

addition, the local inhibition effectively implemented in

V 1 produces further competitive effects from the back-

ground on the stimulus, as shown by the experiment in

which a small plain annulus round a stimulus led to less

suppression of the neuronal responses (in IT) to that

stimulus.

A different computational model of the reduction in
the receptive field size of inferior temporal cortex neu-

rons when objects are presented in natural scenes was

described by Trappenberg, Rolls, and Stringer (2002). In

that model, the input to the inferior temporal visual

cortex modelled as an attractor network using the cor-

tico-cortical recurrent connections was weighted by the

cortical magnification factor of the projection of the

visual field onto the cortex. The model could be acti-
vated in a blank scene by an object distant from the

fovea because the weak peripheral inputs could capture

the attractor, but if a complex background was present,

this produced strong activation from foveal inputs, and

peripheral inputs from a test object could not capture

the attractor. The model described in this paper also

utilized the greater magnification factor of the fovea

than the periphery, but instead the competition was
implemented by local lateral competition, which became

effectively global in the inferior temporal visual cortex

because there were global interactions within IT

(implemented in the model because there were few

neurons in IT, but more realistically by intermingled

neurons in a distributed non-topological organization in

IT).

Although the timing of the interactions between the
ventral visual stream, early modules, and the dorsal vi-

sual stream is not the subject of this paper as it has been

treated elsewhere (Deco & Lee, 2002; Rolls & Deco,

2002), we do note that the timing of interactions be-

tween the modules in the model shows similar effects to

those found neurophysiologically (Martinez et al.,

2001). For example, with object-based attentional bias

applied to the IT module at the top of the ventral visual
stream, attentional effects are found first in this IT

module, then in V 4, then in the early modules V 1 and

V 2, then in the MT module, and finally in the parietal

module at the top of the dorsal visual stream where the

activation represents the spatial position of the object

cued in the IT module (Deco & Lee, 2002; Rolls & Deco,

2002). Conversely, if a spatial attentional cue is applied

to the PP module, then attentional modulation occurs in
the following order: MT, V 2 and V 1, V 4, and finally IT

(see Fig. 1) where the activation represents the object

that was at the spatial location cued in PP. We note that

in this model V 1 tends to show the top–down attentional

effects investigated in this paper and elsewhere (Deco &

Lee, 2002; Rolls & Deco, 2002) after V 2 when the timing

is with respect to the onset of the attentional bias, as this

is a property of the architecture shown in Fig. 1. Of
course, if the attentional bias is already present before a

visual stimulus is presented, then attentional effects will

be evident in V 1 before V 2, as the latencies of the neu-

ronal response to the image will tend to be shorter in V 1,
which again is a straightforward property understand-

able from Fig. 1. Another property of the dynamical

system implemented in the model is that it can account

for multiplicative (as contrasted with additive) effects of
attention on visual processing (McAdams & Maunsell,

1999), due to interactions between the non-linearity of

the activation function and the mutual inhibition be-

tween the neurons, as explained by Rolls and Deco

(2002). In addition, comparisons of the two classes of

model combined in the architecture described here with

other models of invariant recognition or attention

(Olshausen, Anderson, & Van Essen, 1993; Riesenhuber
& Poggio, 2000; Salinas & Abbott, 1997; Usher & Nie-

bur, 1996) are provided by Rolls and Deco (2002).

In conclusion, we have shown in this model that a

feature hierarchical network can be combined with a

dynamical model using backprojections to account for

the increasingly global character of attention-based top–

down modulation evident in the inferior temporal visual

cortex compared to the earlier modules. The local mu-
tual inhibition within a layer also enables predictions to

be made from the model about the interactions between

stimuli in different locations in a visual scene. Overall,

the model offers a way for studying the dynamical

interactions between a dorsal visual �where’ stream and

a ventral visual �what’ stream in a context in which

invariant visual object representations are being formed

in a hierarchically organized ventral visual stream.
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Appendix A. Mathematical formulation of the model

A.1. Neurodynamical equations

A model of brain functions requires the choice of an

appropriate theoretical framework, which permits the

investigation and simulation of large-scale biologically

realistic neural networks. Starting from individual
spiking neurons one can derive a differential equation

that describes the dynamical evolution of the averaged

activity of a pool of extensively many equivalent neu-

rons. Several areas of the brain contain groups of neu-

rons that are organized in populations of units with

similar properties. These groups for mean-field model-

ling purposes are usually called pools of neurons and are

constituted by a large and similar population of identi-
cal spiking neurons that receive similar external inputs

and are mutually coupled by synapses of similar

strength. Assemblies of motor neurons (Kandel, Sch-

wartz, & Jessel, 2000) and the columnar organization in

the visual and somatosensory cortex (Hubel & Wiesel,

1962) are examples of these pools. Each single cell in a

pool can be described by a spiking model. Due to the

fact that for large-scale cortical modelling, neuronal
pools form a relevant computational unit, we adopt a

population code. We take the activity level of each pool

of neurons as the relevant dependent variable rather

than the spiking activity of individual neurons. It is

possible to derive dynamical equations for neuronal

pool activity levels by utilizing the mean-field approxi-

mation (Abbott, 1991; Amit & Tsodyks, 1991; Wilson &

Cowan, 1972). According to this approximation, we
categorize each cell assembly by means of its activity

AðtÞ. A pool of excitatory neurons without external in-

put can be described by the dynamics of the pool activity

given by

s
oAðtÞ
ot

¼ �AðtÞ þ qF ðAðtÞÞ; ðA:1Þ

where the first term on the right-hand side is a decay

term and the second term (scaled by the constant q)
takes into account the excitatory stimulation between
the neurons in the pool. In the previous equation, the

non-linearity

F ðxÞ ¼ 1

Tr � s log 1� 1
sx

� � ; ðA:2Þ

is the response function (transforming current into dis-

charge rate) for a spiking neuron with deterministic

input, membrane time constant s, and absolute refrac-
tory time Tr. Eq. (A.1) was derived by Gerstner (2000)

assuming adiabatic conditions (i.e., the activity changes

only slowly compared with the typical interval length)

(see further Rolls & Deco, 2002, pp. 218–224).

We now present a formal description of the model.

We consider a pixelized grey-scale image given by a

N � N matrix COrig
ij . The subindices ij denote the spatial

position of the pixel. Each pixel value is given a grey

level brightness value coded in a scale between 0 (black)

and 255 (white). The first step in the preprocessing

consists of removing the DC component of the image

(i.e., the mean value of the grey-scale intensity of the
pixels). (The equivalent in the brain is the low-pass fil-

tering performed by the retinal ganglion cells and lateral

geniculate cells. The visual representation in the LGN is

essentially a contrast invariant pixel representation of

the image, i.e. each neuron encodes the relative bright-

ness value at one location in visual space referred to the

mean value of the image brightness.) We denote this

contrast-invariant LGN representation by the N � N
matrix Cij defined by the equation

Cij ¼ COrig
ij � 1

N 2

XN
i¼1

XN
j¼1

COrig
ij : ðA:3Þ

Feedforward connections to a layer of V 1 neurons

perform the extraction of simple features like bars at

different locations, orientations and sizes. Realistic

receptive fields for V 1 neurons that extract these simple

features can be represented by 2D-Gabor wavelets. Lee

(1996) derived a family of discretized 2D-Gabor wave-

lets that satisfy the wavelet theory and the neurophy-
siological constraints for simple cells mentioned above.

They are given by an expression of the form

Gpqklðx; yÞ ¼ a�kWHlða�kðx� 2pÞ; a�kðy � 2qÞÞ; ðA:4Þ

where

WHl ¼ Wðx cosðlH0Þ þ y sinðlH0Þ;�x sinðlH0Þ
þ y cosðlH0ÞÞ ðA:5Þ

and the mother wavelet is given by

Wðx; yÞ ¼ 1ffiffiffiffiffiffi
2p

p e�ð1=8Þð4x2þy2Þ½eijx � e�j2=2�: ðA:6Þ

In the above equations H0 ¼ p=L denotes the step

size of each angular rotation; l the index of rotation

corresponding to the preferred orientation Hl ¼ lp=L;
k denotes the octave; and the indices pq the position

of the receptive field centre at cx ¼ pðN=NV 1Þ and

cy ¼ qðN=NV 1Þ. In this form, the receptive fields at all

levels cover the spatial domain in the same way, i.e. by

always overlapping the receptive fields in the same
fashion. In the model we use a ¼ 2, b ¼ 1 and j ¼ p
corresponding to a spatial frequency bandwidth of one

octave.
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The neurons in the pools in V 1 have receptive fields

performing a Gabor wavelet transform. Let us denote

by IV 1pqkl the sensory input activity to a pool AV 1
pqkl in V 1

which is sensitive to a spatial frequency at octave k, to a

preferred orientation defined by the rotation index l,
and to stimuli at the centre location specified by the

indices pq. The sensory input activity to a pool in V 1 is

therefore defined by the modulus of the complex valued
convolution between the corresponding receptive fields

and the image, i.e.
IVIpqkl ¼ khGpqkl;Cik ¼
XN
i¼1

XN
j¼1

Gpqklði; jÞCij

�����
����� ðA:7Þ
and is normalized to a maximal saturation value of

0.025.

Let us denote by AV 2
pql, A

V 4
pql and AIT

pql the activity of the
l-pool in a column with receptive fields at the retinal

center cpq in the module V 2, V 4, and IT module,

respectively. Similarly, let us denote with APP
ij the activity

of a pool in the PP module corresponding to the loca-

tion ij in the visual field. The neurodynamical equations

that regulate the temporal evolution of the whole system

are given by the following set of coupled differential

equations:

s
oAVI

pqklðtÞ
ot

¼ �AV 1
pqkl þ aF ðAV 1

pqklðtÞÞ � bI inh;V 1pq ðtÞ þ IV 1pqklðtÞ

þ cbI
V 1�PP
pq ðtÞ þ k1IV 1�V 2

pqkl ðtÞ þ I0 þ m;

ðA:8Þ
s
oAV 2

pqlðtÞ
ot

¼ �AV 2
pql þ aF ðAV 2

pqlðtÞÞ � bI inh;V2pq ðtÞ

þ cbI
V 2�PP
pq ðtÞ þ k2IV 2�V 4

pql ðtÞ þ I0 þ m; ðA:9Þ
s
oAV 4

pqlðtÞ
ot

¼ �AV 4
pql þ aF ðAV 4

pqlðtÞÞ � bI inh;V4pq ðtÞ

þ k3IV 4�IT
pql ðtÞ þ I0 þ m; ðA:10Þ
s
oAIT

pqlðtÞ
ot

¼ �AIT
pql þ aF ðAIT

pqlðtÞÞ � bI inh;ITpq ðtÞ

þ I IT;Al þ I0 þ m; ðA:11Þ
s
oAPP

ij ðtÞ
ot

¼ �APP
ij þ aF ðAPP

ij ðtÞÞ � bI inh;PPij ðtÞ þ cf I
PP�V 1
ij ðtÞ

þ cf I
PP�V 2
ij ðtÞ þ IPP;Aij þ I0 þ m: ðA:12Þ

The spatial attentional biasing couplings IV 1�PP
pq ;

IV 2�PP
pq ; IPP�V 1

pq and IPP�V 2
ij due to the intermodular �where’

connections with the pools in the parietal module PP are

given by
IVE�PP
pq ¼

i;j

wVE�PP
pqij F ðAPP

ijnðtÞÞ

for VE ¼ V 1; V 2; ðA:13Þ
IPP�V 1
ij ¼

X
pqkl

wV 1�PP
pqij F ðAV 1

pqklðtÞÞ ðA:14Þ

and

IPP�V 2
ij ¼

X
pql

wV 2�PP
pqij F ðAV 2

pqlðtÞÞ: ðA:15Þ

The connections between pools in the ventral stream

and pools in the PP module are specified such that

topographically corresponding regions (in PP and in the
ventral modules) are connected with maximal strength

and the connections with neighboring regions decay

with Gaussian modulation. The mutual (i.e., forward

and back) connections between a pool AV 1
pqkl in VI , or AV 2

pql

in V 2 and a pool APP
ij in PP are therefore defined by

wVE�PP
pqij ¼ exp

(
� distðcpq; cijÞ2

2r2
VE

)
; ðA:16Þ

where cab corresponds to the 2D-center in pixel retinal

coordinates associated with the pool with space indices

ab (in a ventral or PP module), and distðc1; c2Þ is the

Euclidean distance between centers c1 and c2. These

connections mean that the VI pool AV 1
pqkl will have

maximal amplitude when spatial attention is located at
cpq in the visual field, i.e. when the pool APP

ij in PP cor-

responding to cij ¼ cpq is maximally activated. The same

analysis hold for connections between pools in V 2 and

PP.

The feature based attentional top–down biasing

terms IV 1�V 2
pqkl due to the intermodular �what’ connections

of pools between two immediate modules in the ventral

stream are defined by
IV 1�V 2
pqkl ¼

XNV 2

~pp¼0

XNV 2

~qq¼0

XC
~ll¼0

wV 1�V 2
pqkl~pp~qq~llF ðA

V 2
~pp~qq~llðtÞÞ; ðA:17Þ
IV 2�V 4
pql ¼

XNV 4

~pp¼0

XNV 4

~qq¼0

XC
~ll¼0

wV 2�V 4
pql~pp~qq~ll F ðA

V 4
~pp~qq~llðtÞÞ; ðA:18Þ
IV 4�IT
pql ¼

XNIT

~pp¼0

XNIT

~qq¼0

XC
~ll¼0

wV 4�IT
pql~pp~qq~ll F ðA

IT
~pp~qq~llðtÞÞ; ðA:19Þ
where wV 1�V 2
pqkl~pp~qq~ll

, wV 2�V 4
pql~pp~qq~ll

and wV 4�IT
pql~pp~qq~ll

are the connection

strengths between the V 1–V 2, V 2–V 4 and V 4–IT pools,
respectively.

The local lateral inhibitory interactions I inh;VEpq in

modules in the ventral stream are given by
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I inh;VEpq ¼
X
~pp;~qq;~kk;~ll

winh;VE
pq~pp~qq F ðAVE

~pp~qq~kk~llðtÞÞ for VE ¼ V 1; ðA:20Þ

I inh;VEpq ¼
X
~pp;~qq;~ll

winh;VE
pq~pp~qq F ðAVE

~pp~qq~llðtÞÞ for VE ¼ V 2; V 4; IT :

ðA:21Þ

In the preceding two equations winh;VE
pq~pp~qq expresses the

lateral local connectivity between lateral nodes defined

by

winh;VE
pq~pp~qq ¼ 1:0 if p ¼ ~pp and q ¼ ~qq;

winh;VE
pq~pp~qq ¼ d exp � distðcpq;c~pp~qqÞ2

r2VE

n o
else;

8<
:

ðA:22Þ

where d and r control the amount and spread of lateral

inhibition respectively. In our simulations, we use d ¼ 1,

rV 1 ¼ 16, rV 2 ¼ 2, rV 4 ¼ 1 and rIT ¼ 1.

The local lateral inhibitory interactions I inh;PPij in the

PP module in the dorsal stream are given by

I inh;PPij ¼
X
~ii;~jj

winh;PP

ij~ii;~jj
F ðAPP

~ii~jj ðtÞÞ; ðA:23Þ

winh;PP

ij~ii;~jj
being the lateral local connections between lateral

nodes defined by

winh;PP

ij~ii~jj
¼ 1:0 if i ¼ ~ii and j ¼ ~jj;

winh;PP

ij~ii~jj
¼ d exp � distðcij ;c~ii~jjÞ

2

r2
PP

� �
else:

8><
>:

ðA:24Þ

In the particular case of PP, the center cij coincides with
the location ij in the retinal input matrix.

The external attentional spatially specific top–down

bias IPP;Aij is assumed to come from prefrontal area 46d,

whereas the external attentional object-specific top–
down bias I IT;Al , is assumed to come from prefrontal area

46v. Both of them are associated with working memory.

In our simulations, we use a ¼ 0:95, b ¼ 0:8, cf ¼ 1

cb ¼ 0:4, k1 ¼ k2 ¼ k3 ¼ 0:4, d ¼ 0:1, I0 ¼ 0:025, and the

standard deviation of the additive noise m; rm ¼ 0:02.
The values of the external bias IPP;Aij and I IT;Al are equal to

0.07 for the pools that eventually receive an external

positive bias and otherwise are equal to zero. The choice
of these parameters is uncritical and is based on bio-

logical parameters.

In the case of object-based attention, the bias in IT

I IT;Al is set so that only the pool l corresponding to the

object to be attended to receives a positive bias, while

the external attentional location-specific bias in PP IPP;Aij

is set equal to zero everywhere. The external attentional

bias I IT;Al drives the competition in the IT module so that
the pool corresponding to the attended object wins.

In the case of space-based attention, the bias in PP

IPP;Aij is set so that only the pool associated with the
spatial location where the object to be identified is re-

ceives a positive bias, i.e. a spatial region will be �illumi-

nated’. The other external bias I IT;Al is zero everywhere.

In this case, the dynamics evolves such that in PP only

the pool associated with the top–down biased spatial

location will win. This fact drives the competition in V 1,
V 2, V 4, and IT such that only the pools corresponding

to features of the stimulus at that location will win,
biasing the dynamics in IT such that only the pool

identifying the class of the features at that position will

remain active indicating the category of the object at

that predefined spatial location.
A.2. The trace learning rule

During a learning phase each object is learned. This is
done by training the connections between modules in the

ventral stream
�
i.e., wV 1�V 2

pqkl~pp~qq~ll
;wV 2�V 4

pql~pp~qq~ll

�
, and wV 4�IT

pql~pp~qq~ll
, by a

Hebbian-like trace learning rule.

We implemented here the original trace learning rule

used in the simulations of Wallis & Rolls (1997) which is

given by

dwij ¼ a�yysi x
s
j ; ðA:25Þ

where xsj is the jth input to the pool at time step s; yi is
the output of the ith pool, and wij is the jth weight on

the ith pool. The trace �yysi is updated according to

�yysi ¼ ð1� gÞysi þ g�yys�1
i : ðA:26Þ

The parameter g 2 ½0; 1� controls the relative contri-
butions to the trace �yysi from the instantaneous firing rate

ysi at time step s and the trace at the previous time step
�yys�1
i where for g ¼ 0 we have �yysi ¼ ysi and Eq. (A.25)

becomes the standard Hebb rule

dwj ¼ aysxsj : ðA:27Þ
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