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This is a reprint of David Marr’s 1982 book. A foreword placing

the book in its historical context is added by Shimon Ullman, and

an afterword by Tomaso Poggio is added on some of the themes

in the book. David Marr was one of the originators of compu-

tational neuroscience, and the useful re-publication of this book

enables us to assess how this field is developing, and to put David

Marr’s contributions into perspective. David Marr (1945–80)

obtained a First Class degree in Mathematics at the University

of Cambridge in 1966; and was sufficiently interested in how

the brain works to attend the Part II undergraduate courses in

physiology and psychology of the Natural Sciences Tripos.

(David was not experienced in practical classes, and happened

to be paired with Barbara Rolls, the first female PhD student in

physiology at Cambridge, who also sat in on the practical classes

and provided expertise partly as a result of her training with Alan

Epstein at the University of Pennsylvania.) One of the lecturers

in physiology was Giles Brindley, who was interested in vision

(as were many of the other members of the Department, including

Horace Barlow, Fergus Campbell, William Rushton and John

Robson) and in synaptic physiology. [Giles Brindley’s Physiology

of the Retina and Visual Pathway (Physiological Society

Monograph No. 6, Edwin Arnold, London) appeared in 1970.]

Giles Brindley published a paper on how different classes of syn-

apses might show plasticity and contribute to learning in neural

networks (Brindley, 1969). These lectures and this work stimulated

David’s thinking about synaptic modification and its role in

systems in the brain that learn. This led to three seminal papers:

on the hippocampus (Marr, 1971), the cerebellum (Marr, 1969)

and the neocortex (Marr, 1970). David’s theory of the hippocam-

pus was influenced too at the systems level by Larry Weiskrantz’s

Part II lectures in psychology, which treated topics such as

memory and emotion (Weiskrantz, 1956, 1968a, b; Weiskrantz

and Saunders, 1984). The same Part II lectures also influenced

my own research on memory, emotion and vision (Rolls, 2005,

2008).

One important property of David Marr’s approach at this time

was the move to take into account the quantitative network archi-

tecture of the brain system being modelled—the hippocampus,

cerebellum and neocortex (Marr, 1969, 1970, 1971)—to produce

a quantitative theory. This has proven to be very important in

subsequent computational neuroscience approaches to memory,

vision, attention and decision making (Rolls and Treves, 1998;

Rolls and Deco, 2002; Rolls, 2008; Rolls and Deco, 2010).

However, neuroscience was insufficiently advanced in the 1970s

for David Marr to put his theories to empirical test. Nonetheless,

he did try—working for example with John Eccles (Eccles et al.,

1967) to test the prediction that the cerebellar parallel fibre to

Purkinje cell synapses would modify associatively with the inferior

olive/climbing fibre input to the Purkinje cell. They were not able

to confirm this prediction, perhaps in part because the climbing

fibre input was stimulated at much higher rates than these fibres

are now known to fire naturally (in the range of 0–10 spikes/s).

But this fundamental tenet and prediction of the theory of learning

that occurs at these synapses was subsequently confirmed (Ito,

1984). Partly because of this difficulty in testing his neural network

theories of cortical structure in the 1970s, David Marr chose to

move to a different level of investigation in which computations

being performed were studied, and tested by psychophysics,

rather than being modelled at the level of their implementation

in the brain. It is at this level that his 1982 book, Vision, is written.

David performed the research for the book at the Massachusetts

Institute of Technology (MIT) where he had moved in 1973,

partly, I was told, because MIT could provide a teletype in his
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bedroom with a connection to a large computer on the campus.

(The University of Cambridge was, however, quite advanced in

computing at the time, and I remember while an undergraduate

helping to dismantle EDSAC, one of the first large British com-

puters; it was described as rather unreliable, with thousands of

triode valves to implement flip-flops.)

Vision thus describes a computational approach to human

vision. The first part of the book is concerned with early visual

processing (called the primal sketch by Marr), including edge de-

tection, stereopsis, directional selectivity, shape contours, surface

texture and shading. These are areas in which Marr made import-

ant contributions. Chapter 4 (From Images to Surfaces) describes

Marr’s 2½-D sketch which is a viewer-centred representation of

the visible surfaces based on the results of early visual processing.

An example of what he meant by a 2½-D sketch is illustrated by

his Figure 3-12 (Fig. 1). This is an important advance, for it goes

beyond the concept of segmentation of the visual scene into ob-

jects, as an important step in the early analysis of vision, to focus

instead on using all the information that is available to represent

the surfaces that are actually visible and their depths from the

observer as a precursor to analysis at a later stage. This again is

useful, for computer vision approaches have great difficulty in

segmenting whole scenes into objects using simple early vision

algorithms. David Marr used the subjective contours visible in his

Figure 2-6 (Fig. 2) to emphasize the importance of representing

contour and depth even when there is no direct visual evidence

for them.

Chapter 5 is concerned with Representing Shapes for

Recognition. Marr’s 3D sketch is described here, and involves rep-

resenting parts of objects and their syntactic relation to each other

(e.g. the fingers are attached to the palm and not to the elbow or

trunk). Object recognition was approached by attempting to

match a syntactic description of an object with the stored syntactic

descriptions of all objects. The approach has the aim of producing

view-invariant object representation by specifying the parts of an

object that are visible, and their relation to each other, which

provides a view invariant description of an object suitable for

view invariant object recognition. Marr’s famous example was

the representation of the human body as a set of interlinked

generalized cones (Marr and Nishihara, 1978), with the approach

illustrated in his Figure 5-3 (Fig. 3). As a theory of object recog-

nition in the brain, this has proved intractable. It is very hard to

extract all the cylinders or shape components that describe objects

from a complex scene; very hard to know which shape primitives

belong to a single object; very hard to represent the syntactic

relations in a neuronal network; and very hard to perform the

look-up of a syntactic description of a visible object with all pos-

sible stored 3D sketches of objects to perform object recognition

(Rolls, 2008). Marr, in fact, recognized that his approach would

have been strengthened and would perhaps have changed with

time, writing poignantly in the summer of 1979 in the preface to

Vision: ‘events happened which forced me to write this book a

few years earlier than I had planned’. (David Marr died of leukae-

mia in 1980 at the age of 35; and Vision was published posthu-

mously in 1982.)

Instead, theory and closely linked empirical research suggest

that the brain takes a very different approach to invariant object

recognition—recognition that is invariant with respect to the pos-

ition of the object on the retina, its size and even its view (Rolls,

1992, 2000, 2008, 2011). The present understanding is that the

brain uses associative learning that involves temporal and spatial

continuity (which is a property of objects as they transform in the

Figure 1 Figure 3-12: illustration of the 2½-D sketch. (a) The perspective views of small squares placed at various orientations to the

viewer are shown. The dots with arrows symbolically represent the orientations of such surfaces. (b) This symbolic representation is used to

show the surface orientations of two cylindrical surfaces in from of a background orthogonal to the viewer. The full 2½-D sketch would

include rough distances to the surfaces as well as their orientations; contours where surface orientations change sharply, which are shown

dotted; and contours where depth is discontinuous (subjective contours), which are shown with full lines. (Reprinted by permission from

Marr and Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lond B 1978; 200:

269–294.)
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world) at several stages of the cortical hierarchy, from the primary

visual cortex (V1) to the inferior temporal visual cortex, to build

what are effectively view-based representations of parts and of

whole objects that are then associated together to form represen-

tations, which can be accessed associatively in a view-invariant

way. That approach has also been accepted by other investigators,

including Tomaso Poggio (Riesenhuber and Poggio, 1999, 2000;

Serre et al., 2007), who worked with David Marr. The process is

simplified and made tractable by processing only small parts of a

scene at any time—that which is close to the fovea and fixated at

any one time. The receptive fields even become smaller, less than

10� in diameter, in complex natural scenes due to lateral

inhibition; and this is part of the solution to the binding problem

which is thereby greatly reduced as only one or a few objects

close to the fovea are processed at any one time by the inferior

temporal visual cortex where object recognition is represented

(Rolls, 2008).

One of the key issues addressed by Marr in Vision is the level of

analysis that is used in computational neuroscience. Marr favoured

the top level, the computational theory level—what is the goal of

the computation; why is it appropriate; and what is the logic of

the strategy by which it can be carried out? He distinguished this

from the second level, the representation and algorithm—how can

this computational theory be implemented? In particular, what is

the representation for the input and output, and what is the al-

gorithm for the transformation? His third level is hardware imple-

mentation—how can the representation and algorithm be realized

physically? In his earlier work on the cerebellar, neocortical and

hippocampal theories (Marr, 1969, 1970, 1971), he had included

much on the third level, implementation in the brain, and this was

being used to help constrain the computational theory. But, per-

haps partly for the reasons given above, in Vision he strongly

favoured the computational theory approach, suggesting that

one should start here.

However, when understanding the cortical mechanisms of

vision, what is found neurophysiologically (Hubel and Wiesel,

1968; Rolls, 2000, 2008, 2011) and in terms of the neuronal net-

work architecture in the brain provides very important constraints

on the theory, whether this is of vision, memory, attention or de-

cision making (Rolls and Treves, 1998; Rolls and Deco, 2002,

2010; Rolls, 2008). Thus a more modern approach, which is

making very fast progress at present, is to combine empirical

neurophysiological and neuroanatomical data with approaches

Figure 3 Figure 5-3: this diagram illustrates the organization of shape information in a 3D model description of an object based on

generalized cone parts. Each box corresponds to a 3D model, with its model axis on the left side of the box and the arrangement of its

component axes on the right. In addition, some component axes have 3D models associated with them, as indicated by the way the boxes

overlap. The relative arrangement of each model’s component axes, however, is shown improperly, since it should be in an object-centred

system rather than the viewer-centred projection used here. The important characteristics of this type of organization are: (i) each 3D

model is a self-contained unit of shape information and has a limited complexity; (ii) information appears in shape contexts appropriate for

recognition (the disposition of a finger is most stable when specified relative to the hand that contains it); and (iii) the representation can be

manipulated flexibly. This approach limits the representation scope, however, since it is only useful for shapes that have well-defined 3D

model decompositions. (Reprinted by permission from Marr and Nishihara. Representation and recognition of the spatial organization of

three-dimensional shapes. Proc R Soc Lond B 1978; 200: 269–294).

Figure 2 Figure 2-6: subjective contours. The visual system

apparently regards changes in depth as so important that they

must be made explicit everywhere, including places where there

is no direct visual evidence for them.
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that produce and test theories of how the brain computes (Rolls,

2008). In turn, this strategy is informing a new approach to neuro-

logical psychiatry that seeks to understand certain disorders of

brain function (including schizophrenia and obsessive compulsive

disorder) by analysing the stochastic dynamics and stability of cor-

tical systems (Rolls, 2008; Rolls et al., 2008a, b; Rolls and Deco,

2010); and this again relies on combining theory with empirical

research. Marr was certainly right in the following: without theor-

etical approaches being part of how we understand brain function,

we will never understand how vision works, or for that matter

memory, attention, decision making and some neuropsychiatric

disorders of cortical function.

Shimon Ullman in his foreword comments that research mono-

graphs age quickly, but that because Marr treated broad problems

such as how the brain and its functions can be studied, one may

still enjoy the book and appreciate his creativity, intellectual power

and ability to integrate insights and data from the fields of neuro-

science, psychology and computation. Ullman notes that the

central role of invariant 3D models such as that proposed by

Marr has been challenged by subsequent psychophysical and com-

putational studies, which have moved towards an alternative ap-

proach to recognition, based on describing the possible image

appearances of an object rather than its invariant 3D structure,

consistent with the type of model described above (Rolls, 1992,

2008; Serre et al., 2007).

Tomaso Poggio, in his afterword, notes that Marr’s Vision

played a key role in the beginning and rapid growth of the field

of computational neuroscience. Poggio does agree though that it

is now time to re-emphasize the connections between the levels of

analysis described by Marr, if we want to make progress in com-

putational neuroscience; and he has an interesting account of how

the original ‘manifesto’ for their computational approach to brain

function was developed. Poggio indeed makes a salutary point

about theory and explanation in connection with oscillations in

the brain, where Marr’s message may sometimes be lost. Poggio

notes that ‘an explanation of the biophysics of oscillations in the

neural activity of cortical areas appears to be regarded in several

papers as a full explanation in itself, whereas, in the spirit of com-

putational neuroscience, one must also eventually understand

what is the computational role of oscillations and what is the al-

gorithm that controls them. In other words, oscillations may be a

symptom or the mechanism of attention, but which computation

is actually performed by oscillations?’ That challenge is now being

addressed (Deco and Rolls, 2011).

On re-viewing Vision, one is struck by the deep almost philo-

sophical but in fact computational considerations that Marr

brought to understanding brain function. He not only does this,

but also has an interesting Chapter 7 (A Conversation) where he

discusses with himself in almost Platonic dialogue, putting objec-

tions to, and justifications for, the computational approach he

takes. His reflective and penetrating thought is one of his lasting

contributions, as is his approach to computational neuroscience, in

which he was one of the pioneers: floreat computational

neuroscience.

Edmund T. Rolls

Oxford Centre for Computational Neuroscience, Oxford, UK.

www.oxcns.org; Edmund.Rolls@oxcns.org
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