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ABSTRACT: The art of memory (ars memoriae) used since classical
times includes using a well-known scene to associate each view or part
of the scene with a different item in a speech. This memory technique
is also known as the “method of loci.” The new theory is proposed that
this type of memory is implemented in the CA3 region of the hippocam-
pus where there are spatial view cells in primates that allow a particu-
lar view to be associated with a particular object in an event or
episodic memory. Given that the CA3 cells with their extensive recur-
rent collateral system connecting different CA3 cells, and associative
synaptic modifiability, form an autoassociation or attractor network,
the spatial view cells with their approximately Gaussian view fields
become linked in a continuous attractor network. As the view space is
traversed continuously (e.g., by self-motion or imagined self-motion
across the scene), the views are therefore successively recalled in the
correct order, with no view missing, and with low interference between
the items to be recalled. Given that each spatial view has been associat-
ed with a different discrete item, the items are recalled in the correct
order, with none missing. This is the first neuroscience theory of ars
memoriae. The theory provides a foundation for understanding how a
key feature of ars memoriae, the ability to use a spatial scene to encode
a sequence of items to be remembered, is implemented. VC 2017 Wiley
Periodicals, Inc.
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INTRODUCTION

Simonides of Ceos lived to tell the story of how when a banquet hall
collapsed in an earthquake, he could identify all the victims by recalling
from each place at the table who had been sitting there (Cicero, 55
BC). This way of remembering items was developed into what has
become known as ars memoriae by Roman senators, who presented the
steps of a complex legal argument in a speech that might last a whole

day by associating each step in the argument with a
location in a spatial scene through which their memo-
ry could progress from one end to the other during
the speech to recall each item in the correct order
(Yates, 1992). The procedure is also known as the
“method of loci.” Phrases such as “in the first place,”
“in the second place,” probably refer to this method.
Empirical work has demonstrated that the method of
loci is efficacious (De Beni and Cornoldi, 1985; Moe
and De Beni, 2005).

Why is ars memoriae so successful in helping to
remember complex series of points, or arguments, or
people, or objects? The aim of this article is to pro-
vide a scientific theory of why ars memoriae is very
effective. I develop the theory by describing first the
empirical and theoretical foundations for the theory
(Empirical Foundations—Spatial View Cells in the
Primate Hippocampus section; and Theoretical Foun-
dations—A Theory of the Hippocampal CA3 System
as an Object-Spatial View Memory System section),
and then I present the theory (The Theory of Ars
Memoriae section).

EMPIRICAL FOUNDATIONS—SPATIAL
VIEW CELLS IN THE PRIMATE

HIPPOCAMPUS

We can start with the well-known place cells dis-
covered in the rat hippocampus by O’Keefe and col-
leagues (O’Keefe and Dostrovsky, 1971; O’Keefe,
1990), and which were recognized in the award of the
Nobel prize in 2015 to John O’Keefe, and to Edvard
and May-Britt Moser for the discovery of entorhinal
cortex grid cells, which fire to repeated places in the
environment as the rat traverses the places (Hafting
et al., 2005; Moser et al., 2014). Unfortunately these
rat place and grid cells will not easily help to explain
the memory of items in a spatial scene when a human
is in one place moving the eyes across the whole spa-
tial scene, for no place or grid cells would be altering
their firing if the subject was not moving, and the
subject was staying at one place.

More promising are the hippocampal spatial view
cells which respond when a macaque is stationary at
one place, but respond when the monkey looks at one
point in a spatial scene (Rolls et al., 1989, 1997,
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1998; Feigenbaum and Rolls, 1991; Rolls and O’Mara, 1995;
Robertson et al., 1998; Georges-François et al., 1999; Rolls
and Xiang, 2006) (see example of a typical spatial view neuron
in Fig. 1). Each hippocampal neuron responds to a different
spatial view, that is when a different part of the spatial scene is
looked at (Rolls et al., 1998). Each spatial view cell has an
approximately Gaussian shape of its spatial view field, with the
peak of activity at one point in a scene, and gradually decreas-
ing the further away from its peak is fixated (Rolls et al., 1997,
1998; Robertson et al., 1998; Georges-François et al., 1999).
Provided that the monkey is looking at a given part of the
scene, the exact place where the monkey is has little effect
(Rolls et al., 1997, 1998; Robertson et al., 1998; Georges-
François et al., 1999). That is, the neurons encode spatial view,
not place. Many of these spatial view neurons respond when a
scene is being remembered, for example when the scene is
obscured with curtains and the lights are turned off (Robertson
et al., 1998), or when a position in a spatial scene is recalled
from an object, or vice versa (Rolls and Xiang, 2006). The
presence of spatial view cells in the macaque hippocampus that
respond to landmarks being viewed has recently been con-
firmed during a virtual reality spatial navigation task (Wirth
et al., 2017), though it was not possible in that study to fully

separate the effects of spatial view and place in a factorial
design in which spatial view is one factor, and the second is
the place where the actor is located.

Now these spatial view cells do appear to be involved in
memory, for in a task in which the location in the scene where
an object was seen must be remembered, some macaque hippo-
campal neurons respond to the place in the scene where the
object is shown, some to the object, and some to a combina-
tion of the two (Rolls et al., 2005). Moreover, some of these
neurons respond in a one-trial object-place memory task when
a place in a scene is recalled from an object, or when an object
is recalled from a place (Rolls and Xiang, 2006). Primate hip-
pocampal neurons also associate spatial view with the reward
available at a viewed location (Rolls and Xiang, 2005).

For clarification, the evidence on spatial view cells in pri-
mates is that this is a representation provided in the primate
hippocampus that has not been found in the rat hippocampus;
but also it has been made clear that the primate hippocampal
spatial view representation may not be entirely independent of
the place where the primate is located. For example, in a popu-
lation of hippocampal spatial view cells in which spatial view
versus place encoding was carefully analyzed by measuring the
information provided when the firing was measured in several

FIGURE 1. Examples of the firing of a hippocampal spatial
view cell when the monkey was walking around the laboratory. (a)
The firing of the cell is indicated by the spots in the outer set of
four rectangles, each of which represents one of the walls of the
room. There is one spot in the outer rectangle for each action
potential. The base of the wall is towards the centre of each rectan-
gle. The positions on the walls fixated during the recording sessions
are indicated by points in the inner set of four rectangles, each of
which also represents a wall of the room. The central square is a
plan view of the room, with a triangle printed every 250 ms to
indicate the position of the monkey, thus showing that many differ-
ent places were visited during the recording sessions. A spot is
printed every 250 ms in the inner rectangles to show that a wide

range of spatial locations was viewed. (b) A similar representation
of the same three recording sessions as in (a), but modified to indi-
cate more fully the range of places when the cell fired at more than
12 spikes/s, to indicate that this is not a place cell, but a spatial
view cell. The triangle indicates the current position of the monkey.
The same data are shown in the inner and outer rectangles, and
each dot represents one action potential. c1–c4 are cups in which
food may be found. T1 and T2 are trolleys at fixed positions within
the space within which the monkey can walk freely. The four walls
of the room are situated 1–3 mm from the 3 3 3 m2 space in
which the monkey can walk, and are part of a rich laboratory envi-
ronment with windows, door, apparatus and so forth (After
Georges-Francois, Rolls, and Robertson, 1999.)
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places each with several very similar spatial views (a sine qua
non for any such investigation), the information in a popula-
tion of cells about spatial view was 0.327 bits, and about place
was 0.026 bits, using rigorous Shannon information theoretic
measures of the stimulus-specific information (Georges-François
et al., 1999). Thus the encoding of spatial view by primate
hippocampal neurons is not entirely independent of the encod-
ing of place. In addition, at least some primate hippocampal
spatial view cells do have their spatial view firing modulated by
the place where the macaque is located (Rolls and O’Mara,
1995). Further, I note that if there is a cell responding to the
spatial view of, for example a landmark such as a trolley, table
or cup in the testing environment, then that spatial view cell
will fire when the primate is at the place of that landmark,
provided of course that when at that place the landmark still
looks similar to its appearance from other places (Rolls et al.,
1997; Robertson et al., 1998). An example is provided in Fig-
ure 1 of Robertson et al (1998), in which a neuron responded
to a landmark, a table (T2) when the monkey was distant
from the table, and when the monkey was at the table,

provided in both cases that the monkey was looking at the
table (Robertson et al., 1998). Thus a primate spatial view cell
can respond to a spatial view or landmark when the primate is
at the place of the landmark (Rolls et al., 1997; Robertson
et al., 1998).

THEORETICAL FOUNDATIONS—A THEORY OF
THE HIPPOCAMPAL CA3 SYSTEM AS AN

OBJECT-SPATIAL VIEW MEMORY SYSTEM

Figure 2 shows how object representations, from for example
the temporal lobes, are brought together with spatial represen-
tations, from for example the parietal lobe, in especially the
CA3 hippocampal recurrent collateral network. This network
potentially allows objects to be associated with places (Rolls,
1989a, 1990, 2016; Rolls and Treves, 1994; Treves and Rolls,
1994; Rolls and Kesner, 2006; Kesner and Rolls, 2015).

FIGURE 2. Forward connections (solid lines) from areas of
cerebral association neocortex via the parahippocampal gyrus and
perirhinal cortex, and entorhinal cortex, to the hippocampus; and
backprojections (dashed lines) via the hippocampal CA1 pyrami-
dal cells, subiculum, and parahippocampal gyrus to the neocortex.
There is great convergence in the forward connections down to
the single network implemented in the CA3 pyramidal cells; and
great divergence again in the backprojections. Left: block diagram.
Right: more detailed representation of some of the principal

excitatory neurons in the pathways. Abbreviations—D: deep pyra-
midal cells. DG: dentate granule cells. F: forward inputs to areas
of the association cortex from preceding cortical areas in the hier-
archy. mf: mossy fibres. PHG: parahippocampal gyrus and perirhi-
nal cortex. pp: perforant path. rc: recurrent collateral of the CA3
hippocampal pyramidal cells. S: Superficial pyramidal cells. 2:
pyramidal cells in layer 2 of the entorhinal cortex. 3: pyramidal
cells in layer 3 of the entorhinal cortex. The thick lines above the
cell bodies represent the dendrites.
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The Functional Architecture of the CA3
Recurrent Collateral Network

A quantitative theory has been developed of how the hippo-
campus helps to implement episodic memory, for example the
memory of a particular scene with people or objects in it
(Rolls, 1987, 1989a,b, 1990, 1996, 2008, 2016; Treves and
Rolls, 1992; Treves and Rolls, 1994; Rolls et al., 2002; Rolls
and Stringer, 2005; Rolls and Kesner, 2006; Kesner and Rolls,
2015). Within this theory, the CA3 pyramidal cell to CA3
pyramidal cell recurrent collateral system which is highly devel-
oped in primates (Kondo et al., 2009) provides the basis for an
autoassociation or attractor network. In such a network, a par-
ticular object activating a small subset of neurons becomes
associated with a particular place by associative synaptic modi-
fication. Later, presentation of the object can recall the place

using the strengthened synapses; or a place can be recalled
from the object.

More formally, many of the synapses in the hippocampus
show associative modification as shown by long-term potentia-
tion, and this synaptic modification appears to be involved in
learning (see Lynch, 2004; Morris, 2003; Morris et al., 2003;
Nakazawa et al., 2003, 2004; Andersen et al., 2007; Wang and
Morris, 2010; Jackson, 2013). The architecture of an autoasso-
ciation network is shown in Figure 3, and the learning rule is
as shown in Eq. (1) below (Rolls and Treves, 1998; Rolls,
2016). The operation and properties of autoassociation or
attractor networks have been described in detail elsewhere
(Hopfield, 1982; Hertz et al., 1991; Treves and Rolls, 1991;
Samsonovich and McNaughton, 1997; Rolls and Treves, 1998;
Rolls, 2008, 2016). Neuronal network software to illustrate the
properties of attractor networks is available (Rolls, 2016) (see
http://www.oxcns.org).

The hypothesis is that because the CA3 operates effectively
as a single autoassociation network, it can allow arbitrary asso-
ciations between inputs originating from very different parts of
the cerebral cortex to be formed. These might involve associa-
tions between information originating in the temporal visual
cortex about the presence of an object, and information origi-
nating in the parietal cortex about where it is. I note that
although there is some spatial gradient in the CA3 recurrent
connections, so that the connectivity is not fully uniform (Ishi-
zuka et al., 1990; Witter, 2007), nevertheless the network will
still have the properties of a single interconnected autoassocia-
tion network allowing associations between arbitrary neurons
to be formed, given the presence of many long-range connec-
tions which overlap from different CA3 cells. It is very interest-
ing indeed that in primates (macaques), the associational
projections from CA3 to CA3 travel extensively along the lon-
gitudinal axis, and overall the radial, transverse, and longitudi-
nal gradients of CA3 fiber distribution, clear in the rat, are
much more subtle in the nonhuman primate brain (Kondo
et al., 2009). The implication is that in primates, the CA3 net-
work operates even more as a single network than in rodents.

A fundamental property of the autoassociation model of the
CA3 recurrent collateral network is that the recall can be sym-
metric, that is, the whole of the memory can be retrieved from
any part. For example, in an object-place autoassociation mem-
ory, an object could be recalled from a place retrieval cue, and
vice versa (Rolls, 2016).

Continuous Spatial Patterns and CA3
Representations

The fact that spatial patterns, which imply continuous repre-
sentations of space such as those provided by spatial view cells
in primates and place cells in rodents, are represented in the
hippocampus has led to the application of continuous attractor
models to help understand hippocampal function (Zhang,
1996; Samsonovich and McNaughton, 1997; Stringer et al.,
2002a,b; Rolls and Stringer, 2005). This has been necessary,
because space is inherently continuous, the firing of place and

FIGURE 3. The architecture of a continuous attractor neural
network (CANN). The architecture is the same as that of a discrete
attractor neural network. During learning, external inputs ei with
Gaussian spatial fields force the output neurons to fire with rates
ri, the recurrent collaterals produce the same rates rj as the presyn-
aptic inputs to the neurons, and, the synapses wij become associa-
tively modified. Many different inputs each corresponding to a
different spatial representation are applied during learning, and
the synapses between every pair of neurons come to represent the
distance between the positions represented by each pair of neu-
rons. The neurons shown are excitatory, and inhibitory neurons
maintain the average firing so that once the neurons that corre-
spond to one part of the space are firing, they keep each other fir-
ing by the excitatory synaptic connections between them, to
provide a packet or bubble of neuronal activity, as illustrated in
Figure 4. Because of the Gaussian spatial response profile of each
neuron, the space defined is continuous. A continuous attractor
network need not have local connectivity, but the global connec-
tivity illustrated in Figure 3. It is the associations between nearby
positions and the repeated trajectories in the same order through
the space that result in a continuous attractor as a result of the
associative learning between co-active neurons, with nearby posi-
tions in the space not represented necessarily by nearby neurons
in the continuous attractor (Rolls, 2016). Thus as the space is tra-
versed from one end to the other, the bubble of activity moves
continuously through the space.
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spatial view cells is approximately Gaussian as a function of the
distance away from the preferred spatial location, because these
cells have spatially overlapping fields, and because the theory is
that these cells in CA3 are connected by Hebb-modifiable syn-
apses (Rolls, 2008, 2016; Kesner and Rolls, 2015).

A “continuous attractor” neural network (CANN) can main-
tain the firing of its neurons to represent any location along a
continuous physical dimension such as spatial position, head
direction, and so forth (Amari, 1977; Battaglia and Treves,
1998; Stringer and Rolls, 2002; Stringer et al., 2002a,b, 2004,
2005; Rolls and Stringer, 2005; Rolls, 2016). It uses excitatory
recurrent collateral connections between the neurons (as are
present in CA3) to reflect the distance between the neurons in
the state space of the animal (e.g., place or spatial view). These
networks can maintain the bubble or bump of neural activity
constant for long periods wherever it is started to represent the
current state (spatial view, place, etc) of the animal, and are
likely to be involved in many aspects of spatial processing and
memory, including spatial vision (Rolls, 2016). Global inhibi-
tion is used to keep the number of neurons in a bubble or

packet of actively firing neurons relatively constant, and to help
to ensure that there is only one activity packet. Continuous
attractor networks can be thought of as very similar to autoas-
sociation or discrete attractor networks (Rolls, 2016), and have
the same architecture, as illustrated in Figure 3. The main dif-
ference is that the patterns stored in a CANN are continuous
patterns, with each neuron having broadly tuned firing which
decreases with for example a Gaussian function as the distance
from the optimal firing location of the neuron is varied, and
with different neurons having tuning that overlaps throughout
the space. Such tuning is illustrated in Figure 4. For compari-
son, autoassociation networks normally have discrete (separate)
patterns (each pattern implemented by the firing of a particular
subset of the neurons), with no continuous distribution of the
patterns throughout the space (see Fig. 4). A consequent differ-
ence is that the CANN can maintain its firing at any location
in the trained continuous space, whereas a discrete attractor or
autoassociation network moves its population of active neurons
toward one of the previously learned attractor states, and thus
implements the recall of a particular previously learned pattern
from an incomplete or noisy (distorted) version of one of the
previously learned patterns.

Evidence that there is a continuous attractor network in
CA3 includes the following. In rats, hippocampal place cells
show different place fields in different environments with
remapping between different environments (Muller and Kubie,
1987; Lee et al., 2004; Wills et al., 2005; Leutgeb and Leut-
geb, 2007; Alme et al., 2014), consistent with the theory that
the places for one environment are mapped into one continu-
ous spatial chart or configuration, and for another environment
into another continuous spatial chart (Battaglia and Treves,
1998). Further, in rats that are placed in an environment that
is ambiguous between two different environments, hippocam-
pal CA3 place cells sometimes respond as if the animal was in
one environment, and sometimes as if the animal was in the
second environment (Jezek et al., 2011). Rather than sliding
through a continuum of intermediate activity states, the CA3
network undergoes a short period of competitive flickering
between preformed representations of the past and present
environment before settling on the latter. The place cells can
even flicker stochastically between representing one and then
the other environment in different theta cycles (Jezek et al.,
2011). Thus there is considerable evidence supporting the
attractor theory of CA3 operation (McNaughton and Morris,
1987; Rolls, 1987; Rolls, 1989a; Kesner and Rolls, 2015).

So far we have said that the neurons in the continuous
attractor network are connected to each other by synaptic
weights wij that are a simple function, for example Gaussian,
of the distance between the states of the agent in the physical
world (e.g., place, spatial view etc) represented by the neurons.
In many simulations, the weights are set by formula to have
weights with these appropriate Gaussian values. However,
Stringer et al. (2002b) showed how the appropriate synaptic
weights could be set up by learning. They started with the fact
that since the neurons have broad tuning that may be Gaussian
in shape, nearby neurons in the state space will have

FIGURE 4. The types of firing patterns stored in continuous
attractor networks are illustrated for the patterns present on neu-
rons 1–1,000 for Memory 1 (when the firing is that produced
when the spatial state represented is that for location 300), and
for Memory 2 (when the firing is that produced when the spatial
state represented is that for location 500). The continuous nature
of the spatial representation results from the fact that each neuron
has a Gaussian firing rate that peaks at its optimal location. This
particular mixed network also contains discrete representations
that consist of discrete subsets of active binary firing rate neurons
in the range 1,001–1,500. The firing of these latter neurons can
be thought of as representing the discrete events that occur at the
location. Continuous attractor networks by definition contain only
continuous representations, but this particular network can store
mixed continuous and discrete representations, and is illustrated
to show the difference of the firing patterns normally stored in
separate continuous attractor and discrete attractor networks. For
this particular mixed network, during learning, Memory 1 is
stored in the synaptic weights, then Memory 2, and so forth, and
each memory contains part that is continuously distributed to rep-
resent physical space, and part that represents a discrete event or
object.
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overlapping spatial fields, and will thus be co-active to a degree
that depends on the distance between them. They postulated
that therefore the synaptic weights could be set up by associa-
tive learning based on the co-activity of the neurons produced
by external stimuli as the animal moved in the state space. For
example, during learning spatial view cells are forced to fire by
visual cues in the environment that produce Gaussian firing as
a function of the spatial view from an optimal spatial view for
each neuron. The learning rule is simply that the weights wij

from spatial view neuron j with firing rate rj to spatial view
neuron i with firing rate ri are updated according to an associa-
tive (Hebb) rule that is consistent with findings from long-
term potentiation

dwij5krirj (1)

where dwij is the change of synaptic weight and k is the learn-
ing rate constant. During the learning phase, the firing rate ri

of each spatial view neuron i might be the following Gaussian
function of the distance of the spatial view from the optimal
firing view of the neuron

ri5e2s2=2r2

; (2)

where s is the difference between the spatial view x (in degrees)
of the agent and the spatial view xi for neuron i, and r is the
standard deviation. Stringer et al. (2002b) showed that after
training at all positions in the space, the synaptic connections
develop strengths that are an almost Gaussian function of the
distance between the cells in the space. This shows how cells
such as spatial view cells could be associated together in CA3
to form a continuous attractor network.

Combined Continuous and Discrete Memory
Representations in the Same (e.g., CA3)
Network, and Episodic Memory

Space is continuous, and object representations are discrete.
If these representations are to be combined in for example an
object-place memory, then we need to understand the opera-
tion of networks that combine these representations. It has
now been shown that attractor networks can store both contin-
uous patterns and discrete patterns (as illustrated in Fig. 4),
and can thus be used to store for example the location in (con-
tinuous, physical) space (e.g., the place “out there” in a room
represented by spatial view cells) where an object (a discrete
item) is present (Rolls et al., 2002).

Idiothetic Update by Path Integration

We have considered how spatial representations could be
stored in continuous attractor networks, and how the activity
can be maintained at any location in the state space in a form
of short- term memory when the external (e.g., visual) input is
removed. However, many networks with spatial representations
in the brain can be updated by internal, self-motion (i.e., idiot-
hetic), cues even when there is no external (e.g., visual) input.

Path integration can be implemented in recurrent attractor net-
works as described elsewhere for hippocampal CA3 (Samsono-
vich and McNaughton, 1997; Stringer and Rolls, 2002;
Stringer et al., 2002a,b;, 2004; Rolls and Stringer, 2005; Kes-
ner and Rolls, 2015; Rolls, 2016 ) and for the entorhinal cor-
tex (Giocomo et al., 2011; Zilli, 2012). In our approach, the
movement signal, in this case eye position and head direction,
are used as inputs to the spatial view continuous attractor net-
work, with the appropriate synaptic strengths set up by self-
organizing learning (Stringer et al., 2005). The effect is that
there can be a steady trajectory through the space of spatial
views, and potentially remembered spatial views, produced by
head and eye movements (Stringer et al., 2005).

THE THEORY OF ARS MEMORIAE

The Theory

Building on the above evidence, I now describe a theory,
which uses the above components, of how it is that attaching
items to different parts of a remembered but familiar scene
provides a good strategy to remember the order of the items.

An essential feature of the proposal comes from the way in
which a smooth continuous trajectory through a space can be pro-
duced by a small input that pushes one through the space, in the
way described above for spatial view cells (Stringer et al., 2005).
Because the spatial view fields have overlapping approximately
Gaussian receptive fields, when the pushing input moves one in a
certain direction, say left to right, across the scene, the firing of a
set of spatial view cells for one view in the scene automatically
recruits the next set of spatial view cells for the next view in the
scene. That is, the continuous attractor network effectively
embodies the structure of the space, that is the order of the differ-
ent views in the scene, because cells that represent the same view in
the space (even though not topologically together in the CANN)
have strong synaptic connections between each other, and fairly
strong connections only with other neurons in the network that
represent nearby views in the scene. That is the effect of the learn-
ing mechanism described above. Therefore as we move from one
part of the scene to another sliding across the continuous space, the
CANN automatically “looks up” the next adjacent spatial view.
Thus the order of the spatial views is implicit in the structure of the
CANN. Which spatial view is next to another is what is encoded in
the CANN, which effectively represents the distances between the
spatial views in the strengths of the synapses between the neurons.

The proposal is that ars memoriae takes advantage of this
spatial structure and order, with a different item or object asso-
ciated with each spatial view in the scene, in exactly the way
that our research indicates happens for object-place associations
in hippocampal CA3. Thus as the person sweeps continuously
from one spatial view in a scene to another, the correct items
are recalled in the correct order. One strategy is thus to start at
the left of the scene, and then imagine moving one’s view con-
tinuously from the left to the right. After one space has been
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traversed, in ars memoriae sometimes a different space, for
example another room, is continuously traversed next, allowing
the objects or arguments linked by object-place learning to
each view in the next room to be recalled in the correct order
(Yates, 1992).

The capacity of the proposed combined continuous and dis-
crete attractor network in hippocampal CA3 is sufficient to
implement ars memoriae with many different discrete points to
be remembered when traversing a continuous space. For exam-
ple, in the simulations of continuous and discrete items associ-
ated together in a single attractor network, 1,000 neurons were
devoted to the continuous attractor representation in the single
network (with the standard deviation r of the Gaussian con-
nectivity supporting the packet of activity 55 neurons), 500
neurons were devoted to the discrete attractor representation in
the same attractor network, and it was shown that with 10 dif-
ferent place-object associations stored in the network, the recall
of each of the 10 objects from each of the 10 places was per-
fect (Rolls et al., 2002). More details are provided elsewhere
(Rolls et al., 2002) of just how exact the recall of an object is
from the spatial position retrieval cue. Further, it has been
shown that in the rat CA3, it should be possible to store
approximately 100 different charts, with each chart of a differ-
ent environment having many different positions represented
in the continuous map for any one environment (Battaglia and
Treves, 1998). Thus the capacity of the system proposed in the
theory would be sufficient for ars memoriae.

This sweeping in a continuous trajectory through a CANN
state space can be produced by eye and head movements,
which can move the bubble of activity continuously across the
continuous attractor space from one position in the space to
another (Stringer et al., 2005). We have shown that this can
occur for some hippocampal cells in the primate, when the
eyes and/or head move in conditions when the views them-
selves cannot be seen, so that effectively a remembered position
in the spatial view space is being recalled (Robertson et al.,
1998). The only difference is that for ars memoriae, it is possi-
ble that the eyes and head do not actually have to be moved
(though they may move!), but that one just thinks of moving
across the scene to the next position in the spatial view space.
Similarly, it is just possible that the same theory would apply
to a place cell representation, if one were to assume that each
object or step of the argument was associated with a different
place, and it was possible to traverse the imagined places in a
continuous spatial sequence.

Forgetting the Previous Day’s Items, and
Producing a New Order for Different Items

The CA3 network is a single network, in that the recurrent
collaterals reach throughout the CA3 region, and make synap-
tic contacts with other CA3 neurons in all parts of the CA3
region (Kondo et al., 2009). This architecture enables any
object to be associated with any spatial view/place (Rolls,
1989a,; Kesner and Rolls, 2015). However, the capacity of an
autoassociation net is limited, mainly by the number of

recurrent collaterals onto any one CA3 neuron (Treves and
Rolls, 1991; Rolls, 2016). We have shown that with a sparse
representation, the number of memories that can be stored is
in the order of the number of recurrent collateral connections
onto any one neuron (Treves and Rolls, 1991, 1994; Rolls and
Treves, 1994), which is in the order of 12,000 in the rat. If the
limit on the capacity of an attractor network is exceeded, then
the ability to recall memories from the network will be very
degraded (Hopfield, 1982; Amit, 1989). For this reason, and
given that new episodic memories are being formed, some
form of forgetting is required in the hippocampus, and there
are several possible mechanisms (Rolls, 2016).

One mechanism is decay of synaptic strength. The simple
forgetting mechanism is just an exponential decay of the synap-
tic value back to its baseline, which may be exponential in
time or in the number of learning changes incurred (Nadal
et al., 1986). Another form of forgetting is implemented by
setting limits to the range allowed for each synaptic strength or
weight (Parisi, 1986). A third mechanism for forgetting is over-
writing of previously stored memories, which will happen as a
result of heterosynaptic long-term depression. If a postsynaptic
neuron is activated during the formation of a new memory,
then any inactive synaptic inputs, from other memories, will
become weaker, and effect termed heterosynaptic long-term
depression, and this will tend to weaken previously stored
memories, and thus gradual forgetting of old memories occurs
(Rolls, 2008, 2016).

These neural mechanisms contribute to allowing new items
for a different speech or occasion to be added onto a well-
memorized scene, which was used in the practice of ars memo-
riae (Cicero, 55 BC; Yates, 1992). This is the new scientific
theory of ars memoriae proposed in this article. Indeed, this is
the first scientific theory of ars memoriae based on knowledge
about the firing of hippocampal neurons in primates, and on
an understanding of continuous attractor networks and how a
position in such a continuous attractor network can be associ-
ated with an object (Rolls, 2016).

DISCUSSION

The power of the mechanism described here that it is pro-
posed underlies ars memoriae (the art of memory) is that space
is inherently continuous, and when mapped into a continuous
attractor network in a brain region such as the hippocampus
where there are spatial view neurons with approximately Gauss-
ian receptive fields, the proximity of different views of a spatial
scene is represented by the strengths of the synaptic weights
between the neurons. Thus when the bubble or packet of neu-
ronal activity in the CANN moves, whether by idiothetic (self-
motion) input, or by moving in thought from one view of a
scene in say a clockwise direction, then the next adjacent view
in the scene is automatically retrieved from the network. In this
way, a set of views can be recalled in the correct order. If each view
is associated with a different discrete item (e.g., an object or
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thought), then the items are retrieved in the correct order, and
moreover, none is forgotten. It is this order inherent in the spatial
representation in the brain that helps to provide the system with its
power. The items themselves have no order, for each item or object
is represented just by a randomly chosen set of neurons, that is, by
a discrete representation in which each item is uncorrelated with
the other items, as illustrated in Figure 4.

The mechanism as described was implemented with spatial
view cells with Gaussian receptive fields. The exact shape of
the receptive field does not matter, provided that it has a peak
at the centre of the view field, and a decreasing firing rate as
one moves away from the view at which a neuron has its peak
firing rate. The reason is that the continuous attractor network
just learns proximity in its synaptic strengths by an overlap of
firing, and the exact shape of the overlap does not matter. The
view fields of spatial view neurons do have the required proper-
ties (Rolls et al., 1997, 1998; Robertson et al., 1998; Georges-
François et al., 1999).

This is a new theory, and it is new in a number of ways.
First, no previous theory has used as a foundation the spatial
view cells present in primates. These are an essential component
of the theory, for a human can stand in one place, and remem-
ber a series of locations in a scene “out there in space,” each
one of which is associated with a different object or event. That
is an important aspect of ars memoriae, and how it is used, for
example to deliver a speech when standing in one place. This
function could not naturally be performed by rat place cells
(O’Keefe and Dostrovsky, 1971; O’Keefe, 1990; Andersen
et al., 2007; Hartley et al., 2014), for the place where the
human is located while learning the scene-object associations, or
later recalling them, is not changing. Second, no previous theo-
ry of ars memoriae that I know has used a continuous attractor
network to help account for the retrieval of the items (objects
or events) in the correct order. A continuous attractor network
is an important component of the present theory, because it
provides for a continuously linked set of spatial locations that is
formed in the continuous attractor network. The network,
because of the inherent continuity of space, and of the way that
spatial proximity operates in a continuous attractor network,
results in a continuous trajectory through the state space during
recall, “automatically” (i.e., mechanistically) leading to the items
being recalled in the correct order. Thus the continuous attrac-
tor network is an important part of the new theory. Third, an
essential component of the theory is that the system, as impli-
cated in the primate hippocampus, is a memory system, with
spatial to object, or time to object, associations being impor-
tant. These associations are implemented by the firing of pri-
mate hippocampal spatial view cells, as shown by object-spatial
view neurons and reward-spatial view neurons. Fourth, I know
of no other neuroscience theory of ars memoriae based on a
fundamental neurophysiological analysis of the relevant proper-
ties of neurons involved in memory, and of the computational
neuroscience of how these neurons could implement memory
(Kesner and Rolls, 2015; Rolls, 1989a; Rolls, 1990; Rolls,
1996; Rolls, 2016; Rolls and Kesner, 2006; Rolls and Treves,
1994; Treves and Rolls, 1994).

In ars memoriae, an extended argument (or series of points to
be made) may be implemented by associating the first set of
items with the different views of say a first room in a building,
then moving to a second room and associating further items
with each view in that room, and so forth. The theory accounts
for that well, for the different rooms are linked of course by
their proximity, and the last view in one room can become asso-
ciated with the first view in a second room, all followed in a sys-
tematic order (e.g., left to right, or clockwise) in ars memoriae.

Also, for ars memoriae, a prediction is that it is likely to be
useful to utilize scenes that are distant from an observer, for
then the views in the scene are linked continuously as one scans
steadily across the scene from a single place (from which one
might be giving a lecture or speech). A scene with an object in
the middle around which the observer walks produces sudden
and unsystematic changes in the views and the relations between
the views, and is likely to be less efficient for ars memoriae.
Indeed, when analysing the properties of spatial view cells, we
did not have a landmark in the middle of the room, because it
has no relatively fixed spatial relation to other landmarks when
walking around any central landmark. A second prediction is
therefore that the neural encoding of such landmarks that do
not bear a fixed relation to other landmarks may be different
from the continuous attractor mechanism described in this arti-
cle. Such central “landmarks” (such as Nelson’s column in Tra-
falgar Square around which one can walk) may be treated more
like objects, and associated only transiently with the relatively
fixed and distant scene landmarks when viewed from a particular
place. The point here is that the relationship of a central land-
mark in a space does not have a fixed relationship to the distant
fixed elements of a scene, as one moves round a central land-
mark. Indeed, it is part of the theory of hippocampal function
that it is best suited to incorporate allocentric spatial relations,
for then the elements of a scene or a series of places do have a
fixed relationship to each other, and can therefore be learned in
a continuous attractor network (Kesner and Rolls, 2015; Rolls,
1989a; Rolls, 1990; Rolls, 1996; Rolls, 2016; Rolls and Kesner,
2006; Rolls and Treves, 1994; Treves and Rolls, 1994).

The theory described here is, as far as I know, the first neu-
roscience theory of ars memoriae, an art that has been of inter-
est to scholars since classical times more than two thousand
years ago (Yates, 1992). The theory provides a foundation for
understanding how a key feature of ars memoriae, the ability to
use a spatial scene to encode a sequence of items to be remem-
bered, is implemented. The theory also provides an interesting
example of cross-fertilization between the fields of classics and
the arts, and neuroscience.
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