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SUMMARY AND CONCLUSIONS 

1. To analyze the information represented about individual odor 
stimuli in the responses of single olfactory neurons in the primate 
orbitofrontal area, neuronal responses were measured to a set of 
seven to nine odorants in macaques performing an olfactory dis- 
crimination task. The population of neurons analyzed had responses 
that were significantly differential to the odorants. 

2. Information theoretic analyses were applied to the responses 
of the neurons, and information measures were calculated from the 
firing rate of the responses and from the principal components of 
the responses. The information reflected by the firing rate of the 
response accounted for the majority of the information present 
(86%) when compared with the information derived from the first 
three principal components of the spike train. This indicated that 
temporal encoding had a very minor role in the encoding of olfac- 
tory information by single orbitofrontal olfactory cells. 

3. The average information about which odorant was presented, 
averaged across the 38 neurons, was 0.09 bits, a figure that is low 
when compared with the information values previously published 
for the responses of temporal lobe face-selective neurons. 

4. Application of information theoretic analyses to the re- 
sponses of these neurons showed how much information about 
which stimulus was delivered was present in the responses of indi- 
vidual neurons. It was found that for the majority of the neurons 
significant amounts of information were reflected about one or two 
of the odorants presented. 

5. For each neuron, the information reflected in the responses 
of that neuron about the reinforcement value and the information 
about the identity of the odorants were calculated. It is shown that 
many neurons carry information about which of the odorants was 
presented; in addition, some neurons reflect information only about 
the taste association of the stimuli and not about odorant identity. 

6. Measurements of the sparseness of the representation indi- 
cated that a broadly distributed representation of the identity of 
odorants was present in this population of neurons. 

INTRODUCTION 

The primate orbitofrontal cortex forms the ventral aspect 
of the frontal lobe. The primary olfactory (pyriform) cortex 
projects into area 13a in the caudal orbitofrontal cortex, 
from which there are onward projections to an extensive 
part of the orbitofrontal cortex (Barbas 1993; Morecraft et 
al. 1992; Price et al. 1991) . The orbitofrontal cortex also 
contains, more laterally, the secondary taste cortex, which 
also has extensive onward connections to other parts of the 
orbitofrontal cortex (Baylis et al. 1994; Rolls 1995; Rolls 
et al. 1990). 

The orbitofrontal cortex in primates is known to be im- 
portant for the identification and discrimination of odors. In 
humans it has been shown that pathology involving the right 

orbitofrontal cortex affects the ability of subjects to identify 
odors (Jones-Gotman and Zatorre 1988; Zatorre and Jones- 
Gotman 199 1) . This finding has been supported by positron 
emission tomography evidence of activation of the right or- 
bitofrontal cortex during the inhalation of odors in normal 
subjects (Zatorre et al. 1992). In monkeys, lesions to the 
lateral orbitofrontal cortex impair the ability to recognize 
food from nonfood by associated odors (Tanabe et al. 1975). 
Consistent with this, single-neuron recordings from the 
orbitofrontal cortex showed the presence of olfactory neu- 
rons, at least some of which were selective in their responses 
to the odorants used (Tanabe et al. 1974, 1975a,b; Yarita et 
al. 1980). Rolls and Baylis ( 1994) confirmed the presence 
of odor-responsive neurons in the primate orbitofrontal cor- 
tex, and went on to show that for some orbitofrontal neurons 
information from the taste and olfactory modalities con- 
verges onto single neurons. Such neurons may exhibit cross- 
modal correspondence of responses in gustatory and olfac- 
tory modalities for the representation of foods, and thereby 
show selectivity to particular food odors. 

In more recent work it has been shown that the responses 
of at least some olfactory neurons in the orbitofrontal cortex 
are influenced by the reward value and taste association of 
the olfactory stimuli (Critchley and Rolls 1996a,b; Rolls et 
al. 1996). In particular, it has been shown first that some of 
these olfactory neurons that respond to food-related odors 
have this responsiveness modulated by hunger, and respond 
much less to that odor when the monkey is satiated with 
that food (Critchley and Rolls 1996b). Second, it has been 
shown that in an automated olfactory discrimination task, 
the responses of 35% of the neurons reflected whether the 
odor was associated with a food taste (sucrose) or with the 
taste of saline (Critchley and Rolls 1996a). The reinforce- 
ment association of the stimuli was also shown to influence 
the representation of the odorants in multidimensional analy- 
sis of the neuronal responses. Third, it was shown in the 
reversal of an olfactory discrimination task that the responses 
of some orbitofrontal olfactory neurons (68%) depend on 
whether the odor was currently associated with the taste of 
sucrose or with saline (Rolls et al. 1996). 

In recent years there has been much interest in the olfac- 
tory system from computational neuroscientists (e.g., Davis 
and Eichenbaum 1991) . The neuroanatomy of the olfactory 
bulb and the pyriform cortex have provided computational 
modelers with specific examples of parallel ‘distributed pro- 
cessing (Kauer et al. 1991) and architecture of a type well 
suited for associative memory (Haberly and Bower 1989) 
and hierarchical clustering ( Ambros-Ingerson et al. 1990; 
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Granger et al. 1989). A question that arises and that is 
important in understanding the operation of the olfactory 
system with its networks of neurons is how the information 
about odorants is represented by the activity of cortical olfac- 
tory neurons. The investigation described here takes a quan- 
titative information theoretic approach to this issue. 

Information theory provides a measure of how much infor- 
mation is provided by the occurrence of events. The more 
unlikely an event is, the more information is gained by its 
occurrence. In neural systems, the temporal occurrence of 
action potentials can be utilized to determine the information 
reflected in the responses of a cell to a set of stimuli. It is 
natural to think of information as being reflected by the 
increase of firing rate of a neuron to a stimulus, but the 
absence of a neuronal response might also convey informa- 
tion about which stimulus was presented, or information 
might be reflected in the temporal characteristics of the re- 
sponse of a neuron to different stimuli. The unit of informa- 
tion is the bit. The amount of information is the negative 
log( base 2) of the probability of an event occurring. [If the 
event si has probability P( si) , then the information I( si) 
gained by the occurrence of si is 

I(Si) = - log, P( Si) 

Thus if the probability of an event occurring is 1 / 16, then 
4 bits of information are provided by the occurrence of that 
event. If a cell responded at every presentation of 1 stimulus 
of a set of 8 stimuli, and not at all to the other 7 stimuli, 
then 3 bits of information are reflected about the stimulus 
set when the cell fires.] In the present study information 
analysis was applied to the responses of individual olfactory 
neurons to the odorants in the olfactory discrimination task. 
The information conveyed about individual odorants, and 
about the stimulus set, was calculated to provide a metric 
for the responses of olfactory neurons. The information the- 
oretic analyses used were developed from those developed 
by Optican and Richmond ( 1987), Optican et al. ( 1991), 
and Tovee et al. ( 1993). The further developments in the 
analysis used here are described in METHODS, by Treves and 
Panzeri ( 1995), or by Panzeri and Treves ( 1996). 

The selectivity of olfactory neurons to the class of odor 
stimuli is a related major aspect of how information is repre- 
sented in the brain. Neurons may use either ‘ ‘local” or 
grandmother cell encoding, with strong or even great selec- 
tivity of the neuron for a particular environmental stimulus 
(Barlow 1972) ; or fully distributed representations in which 
all the neurons participate (Hinton et al. 1986) ; or sparse 
representations in which encoding by a sparse ensemble is 
used (Rolls and Treves 1990; Treves and Rolls 1991) . 
Sparse ensemble encoding has some advantages of distrib- 
uted representations such as generalization as the nature of 
the input changes, and graceful degradation if the network 
is incompletely formed or damaged. At the same time, sparse 
representations allow large numbers of representations to be 
stored and retrieved in associative neural networks (Rolls 
and Treves 1990; Treves and Rolls 199 1) , and in general, 
the sparseness of the representation has implications for how 
the network operates. Because of the importance of the 
sparseness of the representation for understanding pro- 
cessing in the orbitofrontal olfactory cortex, it was measured 
in this investigation. The sparseness measure used was one 

that can be directly applied to analyses of the storage capac- 
ity of networks of neurons (Treves and Rolls 1991, 1994). 
The olfactory neurons studied consisted of 38 olfactory neu- 
rons that responded differentially to different odorants in an 
olfactory discrimination task. 

METHODS 

Recordings 

Recordings were made from single neurons in the orbitofrontal 
cortex, which included both medial and lateral areas in which 
olfactory responses have previously been described. A few neurons 
were also recorded in the adjacent olfactory regions (e.g., pyriform 
cortex, insula, and ventral striatum). The subjects were two male 
rhesus macaques (Macaca mulatta) weighing 2.5-3.5 kg. Neuro- 
physiological methods were the same as described previously 
(Rolls and Baylis 1994; Rolls et al. 1976, 1990; Scott et al. 1986; 
Yaxley et al. 1990). All procedures, including preparative and 
subsequent ones, were carried out in accordance with the “Guide- 
lines for the Use of Animals in Neuroscience Research” of the 
Society for Neuroscience, and were licensed under the UK Animals 
(Scientific Procedures) Act 1986. The monkey was fed on return 
to its home cage and was allowed access to water ad libitum. Glass- 
coated tungsten microelectrodes were constructed in the manner 
of Merrill and Ainsworth ( 1972) without the platinum plating. A 
computer (IBM 486 DX) collected spike arrival times and dis- 
played on-line summary statistics or a peristimulus time histogram 
and rastergram. To ensure that recordings were made from single 
cells, the interspike interval was continuously monitored to make 
sure that intervals of <2 ms were not seen, and also the waveform 
of the recorded action potential was continuously monitored using 
an analog delay line. 

Localization of recordings 

X-radiography was used to determine the position of the micro- 
electrode after each recording track relative to permanent refer- 
ence electrodes and to the anterior sphenoidal process. This is a 
bony landmark whose position is relatively invariant to brain 
structures ( Aggleton and Passingham 198 1) . Microlesions (60- 
100 PA, 100 s) made through the tip of the recording electrode 
during the final tracks were used to mark the locations of typical 
units. These microlesions together with the associated X-radio- 
graphs allowed the positions of all cells to be reconstructed in 
the 50+m brain sections with the methods described in Feigen- 
baum and Rolls ( 1991) . 

Stimuli 

Suprathreshold concentrations of stimuli were determined such 
that each odorant could be easily identified and discriminated in 
conditions of delivery identical to those employed in the experi- 
ment by the authors and colleagues, and were approximately 
equally intense. The odorants were selected as representative of 
differing putative odor classes (Amoore 1977) and were pure 
chemicals. They are listed in Table 1. 

Reward associations 

The monkeys were able to acquire the task rapidly and work for 
the reward with nearly 100% accuracy. Eugenol was associated 
with the delivery of saline (and therefore was the S odorant) for 
the first monkey. The rewarded odorants in these experiments were 
phenylethanol, butyric acid, naphthalene, caprylic acid, citral, and 
amyl acetate. Eight cells from this monkey are included in this 
study. Of these, five neurons responded differentially only between 
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TABLE 1. Odor-ants used in the olfactory discrimination task 

Odorant Quality 
Concentration 

of Solution Abbreviation 

Eugenol 
Hexylamine 
Phenylethanol 
Butyric acid 
Naphthalene 
Caprylic acid 
Citral 
Amy1 acetate 
Vanillin 

Cloves 
Rotten fish 
Floral 
Putrid 
Moth balls 
Goaty/burnt plastic 
Citrus/boiled sweets 
Pear drops 
Vanilla 

0.2 M* 
0.2 M* 

0.9 M* 
0.05 M 
1.0 M* 
100% 
0.1 M* 
100% 
1.0 M* 

Et 

Pe 
bu 

na 

CP 
ct 
aa 
vn 

* Diluted in propylene glycol. 

eugenol and the remaining odorants [l-way analysis of variance 
(ANOVA) with post hoc Newman-Keuls analysis]. To determine 
whether this was directly due to the reward association or due to 
some quality of eugenol as an odorant (such as trigeminal stimula- 
tion), the saline-associated odorant was changed to hexylamine in 
the task for the second monkey. Eugenol was a rewarded odor for 
the 30 cells collected from this monkey. At a later stage (for 20 
cells in this monkey) a second odorant (vanillin) was also associ- 
ated with saline, chosen because of its reported lack of trigeminal 
stimulation at discriminable concentrations. (Thus for 8 of the 
cells, there were 6 rewarded odors and 1 saline-associated odor; 
for 20 cells, there were 7 rewarded odors and 2 saline-associated 
odors; and for 10 cells, there were 7 rewarded odors and 1 saline- 
associated odor.) 

and Richmond ( 1987)) except that we applied a novel correction 
procedure for the limited number of trials. Whereas previous cor- 
rection procedures were basically empirical ad hoc methods, we 
were recently able to derive analytically a correction term that 
significantly improves the reliability of information estimates, as 
verified with computer simulations and as reported by Treves and 
Panzeri ( 1995) and Panzeri and Treves ( 1996). A novel aspect of 
the data analysis described here is that we investigated how much 
information was available about each stimulus in the set. Because 
we found that most of the information about which stimulus was 
presented is made evident by measuring the firing rate of the neu- 
ron, and temporal encoding adds relatively little additional informa- 
tion for this population of neurons (see Fig. 1), the information 
theoretic analyses described here and used for all data apart from 
those shown in Fig. 1 were based on the information available 
from the firing rate. The period in which this was measured was 
the poststimulus period of 100-600 ms with respect to the onset 
of the olfactory stimulus. (The method used for the information 
calculation shown in Fig. 1 is summarized below and described 
fully by Tovee and Rolls 1995 and Tovee et al. 1993 ) . 

RAW INFORMATION MEASURES. If each stimulus, S, were to 
evoke its own response, r (or its own set of unique responses), 
then on measuring r one would ascertain s and thus gain I(s) = 
-log, P(s) bits of information, where P(s) is the probability of 
occurrence of a particular stimulus or event s. I f  instead, as happens 
in general, the same response can sometimes be shared, with differ- 
ent probabilities, by several stimuli, the probabilistic stimulus-re- 
sponse relation will be expressed by a table of probabilities P( s, r) , 
or, equivalently, of conditional probabilities P( s 1 r) = P( s, r)l 
P( r) . The information gain about a single s on measuring r can 
be assessed as follows. 

Stimulus presentation and recording of neuronal activity The total amount of information or entropy in a set of spike 

The activity of single neurons in the orbitofrontal cortex and 
surrounding areas was recorded during the performance of an olfac- 
tory discrimination task. In the task, the delivery of one of eight 
different odors indicated that the monkey could lick to obtain a 
taste of sucrose. If  one of two other odors was delivered from the 
olfactometer, the monkey had to refrain from licking, otherwise 
the monkey received a taste of saline. One reason for measuring 
responses in this task was that each odor had to be sniffed by the 
monkey as part of the discrimination, thus providing consistent 
olfactory stimulation from trial to trial. This was facilitated by 
signaling to the monkey with a 500-ms tone that the odor delivery 
was about to start, and allowing the monkey just long enough to 
make two licks for sucrose if the odor was sniffed immediately as 
its l-s delivery began. The 38 of the 1,696 neurons (2.2%) that 
responded differently to the different odors in the task are consid- 
ered here. The recording methods and neuronal population ana- 
lyzed are described further elsewhere (Critchley and Rolls 1996a). 
Some of the analyses described here were performed on the re- 
sponses to the seven odors (or, for a few cells, 6 odors) associated 
in the task with sucrose, so that differing reinforcement associations 
did not influence the measurements, which thus reflected odor qual- 
ity independently of different associations with taste. Other analy- 
ses, as made clear in the RESULTS section, were performed on these 
odors and also on the one or two saline-associated odors. Where 
shown, the firing rates of the neurons are calculated from a 500- 
ms time window beginning 100 ms after onset of odorant delivery. 
This same time window was used in the principal component analy- 
sis of the spike train, from which informational measures were 
derived. 

trams K is 

H(R) = - xP(r) log, P(r) 
r  

(0 

We can separate this out into components related to each individual 
stimulus s by noting that 

.08 
i 

? i 
- 

Principal components 

Information analysis 

The principles of the information theoretic analysis were similar 
to those developed by Richmond and Optican ( 1987) and Optican 

FIG. 1. Average information I( S, R) about the set of 7-9 stimuli avail- 
able in the responses of the neurons, averaged across 38 neurons. The 
information measures were calculated using the bootstrap correction de- 
scribed by Tovee et al. ( 1993 ) and derived from the firing rate, the 1 st 
principal component of the response, the 1st 2 principal components of the 
response and the 1st 3 principal components of the response. 
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so that 

H(R) = - ~f’(s)~P(rb) log, PO9 
s r 

(3) 

This enables us to identi 
ated with each stimulus 

f y  the total amount of information associ- 

H(s,R) = - xP(rls) log, P(r) (4) 

However, not all of this information is actually “about” the stimu- 
lus. Some of it may concern unrelated things. Therefore we have 
to subtract from this total information the amount of information 
unrelated to the stimulus s. Clearly any variability in the spiking 
when the stimulus is held fixed represents information unrelated 
to the stimulus. The information associated with variations in the 
spike train at fixed stimulus is just 

H(Rls) = - xP(rls) log, P(rIs) 
r 

(5) 

The amount of information actually about the stimulus s is the 
amount of irrelevant information (Eq. 5) subtracted from the total 
information associated with that stimulus (Es. 4) 

O,R) = - CP(rls) [log, P(r) - log2 Wls)l (6) 

Using P(s,r) = P(rls)P(s) = P(slr)P(r), this can be written 

in different forms as 

I(s,R) = xP(rls) log, ~ = 
r 

(7) 

(This can be regarded as the difference between the original uncer- 
tainty [or a priori entropy] and the residual uncertainty after r is 
known, and attains its maximum value I(s) = -log, P(s) only if 
the probabilistic relation reduces to the deterministic one P( s 1 r) = 
1 for s = s(r), and P(slr) = 0 otherwise.) 

Averaging over different stimuli s in the set of stimuli S, one 
obtains the average information gain about the set of stimuli S pres- 
ent in the spike data R (where R denotes the set of responses r) as 

P(w) 
I(S,R) = xP(s)I(s,R) = xP(s,r) log, ~ 

s s, r 
fYs>fYr> 

= Cs,rfYw(49 [log, fY4r) - 1% fwl (8) 

In the results we show both I( si, R) , the information available 
in the responses of the cell about each individual stimulus si, and 
I( S,R), the average information across all stimuli that is provided 
about which of the set of stimuli was presented. 

In evaluating the information content from the data recorded, 
the neuronal responses were simply quantified by the number of 
spikes within a preset time period, 100-600 ms poststimulus un- 
less otherwise stated (a unidimensional measure based on a firing 
rate measurement). (We also performed a principal component 
analysis of the time course of the neuronal responses to quantify 
any information that might be available in the temporal pattern of 
the spike arrival times. For visual neurons, we have found that 
most of the information is available in the firing rate, which is 
close to the first principal component of the neuronal response: 
see Rolls and Tovee 1995; Tovee and Rolls 1995; Tovee et al. 
1993, 1994.) Although the set of stimuli can be discrete (it is in 
the present experiment), R is generally a continuum, e.g., the 
firing rate in spikes per second. Because in practice one has to 
evaluate the expression for I by performing a sum rather than an 
integral, R needs to be quantized. We perform the quantization as 
follows. The original data are represented by the number of spikes 
nk recorded in trial k within the prescribed window, and are there- 

fore positive integers. Their range is divided into a preselected 
number D of bins (we usually used D = 15, cf. Optican and 
Richmond 1987), with the bin limits selected so that each bin 
contains the same number of trials (within t 1). For example, if 
100 trials have to be allocated to 15 bins, the 1st bin extends from 
zero to midway between the lowest 7th and 8th response, the 2nd 
from there to midway between the lowest 14th and 15th response, 
and so on until the last bin, which extends from midway between 
the 94th and 95th response to plus infinity. A smoothing procedure 
is applied by convolving the individual values n with a Gaussian 
kernel whose width is proportional to the square root of each rate 
value (the proportionality factor is set such that on average the 
smoothing widths match the standard deviations on of the values 
for each stimulus, which appear to scale with roughly the square 
root of the mean rates). The result, normalized by dividing by the 
total number of trials, is quantized into the bins defined above, 
the area within each bin being used as an estimate of the joint 
probability P( s, r), where r corresponds to one of the D response 
bins. Summing over all stimuli gives P( r) =Zscs P( s,r) . 

Information values are in general dependent on the smoothing 
and binning procedures adopted, and most importantly on the num- 
ber of bins D and on the smoothing widths. The information values 
reported here are therefore to be considered as measures relative 
to the present regularization methods. The parameters chosen are a 
compromise between the need to maintain the originally continuous 
nature of the data, which would require fine bins and little smooth- 
ing, and therefore high D and small widths, and the need to control 
finite-sized distortions in the information estimate, which as dis- 
cussed by Treves and Panzeri ( 1995) requires that either D be 
small (e.g., in the absence of smoothing, D should be smaller than 
the number of trials per stimulus) and/or the widths be large. 

INFORMATION ESTIMATES CORRECTED FOR THE LIMITED NUM- 

BER OF TRIALS. The procedure introduced so far for estimating 
the probability P( s, r) of a particular response is rather simple. In 
practice, because of the limited number of trials that can be col- 
lected, the various probability tables are not available, and one can 
at best approximate them with frequency tables PN( r 1 s), PN( r) 
computed on the basis of a (limited) number of trials N. If  N 
is very large, the frequencies should get close to the underlying 
probabilities, but for any finite N there will be a discrepancy, which 
will result in an error in the estimated information gain. Because 
information quantities depend on probabilities not in a linear but 
in a greater than linear manner, the error deriving from this limited 
sampling does not cancel out on averaging many measurements; 
it is, instead, usually biased upward, resulting in an (average) 
overestimate of the information gain, as described by Tovee et al. 
( 1993) and Treves and Panzeri ( 1995). 

The net bias, or average error (usually an overestimating error), 
can be expressed analytically as a formal expansion in 1 lN, and 
the first few terms (in particular, the very 1st) of this expansion 
can be evaluated directly (Treves and Panzeri 1995) in a variety 
of situations. Simulation experiments have shown that the first 
term in the expansion is responsible for most of the discrepancy 
between the raw and correct information measures, whereas suc- 
cessive terms do not in fact correlate with the remainder of the 
discrepancy. This first term can then be subtracted from the raw 
estimates, to produce corrected estimates of Z(S,R) and Z(s,R). 
This procedure has been shown to improve significantly the relia- 
bility of information estimates based on limited data samples, over 
various alternative empirical remedies that have been proposed 
and that do not rely on analytical results (Chee-Orts and Optican 
1993; Hertz et al. 1992). The simplest of these alternatives is to 
subtract from the raw information estimate a correction derived 
from a random shuffling (so-called bootstrap) procedure (Optican 
et al. 1991) . We use here the analytically based procedure, and 
refer to Panzeri and Treves ( 1996) for a more detailed explanation 
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FIG. 2. Histogram showing the values of the average information, 
I( S, R), about the set of 8 -9 odor stimuli available in the responses of each 
of the 38 neurons. 

of how the correction term is computed from the data. With respect 
to the correction based on the shuffling procedure, which we used 
in previous investigations (Tovee and Rolls 1995; Tovee et al. 
1993)) one should note that, although in several cases it yields 
results for I( S,R) that are very close to those obtained with the 
present procedure, it cannot be applied to compute the stimulus- 
specific information I( s,R), simply because the random shuffling 
mixes responses occurring to different stimuli. This is one case, 
therefore, in which it was essential to develop a novel procedure 
to correct for limited sampling, which is described by Panzeri and 
Treves ( 1996). 

where ri is the firing rate to the ith stimulus in the set of y2 stimuli. 
The sparseness has a maximal value of 1.0. This is a measure of 
the extent of the tail of the distribution, in this case of the firing 
rates of the neuron to each stimulus. A low value indicates that 
there is a long tail to the distribution, equivalent in this case to 
only a few stimuli with high firing rates. If  these neurons were 
binary (either responding with a high firing rate or not responding), 
then a value of 0.2 would indicate that 20% of the stimuli produced 
high firing rates in a neuron, and 80% produced no response. In 
the more general case of a continuous distribution of firing rates, 
the sparseness measure, a, still provides a quantitative measure of 
the length of the tail of the firing rate distribution (Treves and 
Rolls 199 1) . This measure of the sparseness of the representation 
of a set of stimuli by a single neuron has a number of advantages. 
One is that it is the same measure of sparseness that has proved 
to be useful and tractable in formal analyses of the capacity of 
neural networks that use an approach derived from theoretical 
physics (see Rolls and Treves 1990; Treves 1990; Treves and Rolls 
1991) . A second is that it can be applied to neurons that have 
continuously variable (graded) firing rates, and not just to firing 
rates with a binary distribution (e.g., 0 or 100 spikes/s) (Treves 
and Rolls 1991) . A third is that it makes no assumption about the 
form of the firing rate distribution (e.g., binary, ternary, exponen- 
tial, etc.), and can be applied to different firing rate distributions 
(Treves and Rolls 1991) . Fourth, it makes no assumption about 
the mean and the variance of the firing rate. Fifth, the measure 
does not make any assumption about the number of stimuli in the 
set, and can be used with different numbers of test stimuli. Its 
maximal value is always 1.0, corresponding to the situation in 
which a neuron responds equally to all the stimuli in a set of 
stimuli. The use of this measure of sparseness in neurophysiologi- 
cal investigations has the advantage that the neurophysiological 
findings then provide one set of the parameters useful in under- 
standing theoretically (Rolls and Treves 1990; Treves and Rolls 
199 1) how the system operates. 

It should be noted, finally, that an information estimate based 
on a quantized response set tends to grow with the size D of the 
set for D small, until it saturates once the width of the D bins 
becomes negligible with respect to the standard deviation of the 
responses for each stimulus. We used D = 15 (similar to the value 
of 12 used by Optican and Richmond 1987) after checking that 
no marked increase in I( s,R) resulted from using larger D values. 

CALCULATION OF INFORMATION BASED ON A PRINCIPAL COM- 

PONENT ANALYSIS. An additional aim of the analysis was to 
investigate whether information was available about which stimu- 
lus was presented in the temporal pattern of arrival of the spikes. 
For example, one odor might produce a sudden onset of the neu- 
ronal response, and another odor a slower onset, and information 
might be available from this. To analyze the possibility of temporal 
encoding by these olfactory neurons, the principal components of 
the time series of the smoothed spike trains to each stimulus were 
used. A related aim was to investigate whether information of 
comparable magnitude was present in the firing rate response of 
the neuron, and for this a single measure of the response (in the 
poststimulus period 100-600 ms) was used. To perform this calcu- 
lation, we performed the analysis using the same methods described 
fully by Tovee et al. ( 1993; Tovee and Rolls 1995), and we do 
not redescribe those methods here. The information calculated in 
this way is shown in Fig. 1 only. 

Sparseness of the rep resentation 

The sparseness, a, of the representation of a set of (odor) stimu 
provided by these neurons can be defined and w as calculated as 

li 

As described in RESULTS, a measure of the response sparseness 
was also calculated, in which the spontaneous firing rate was sub- 
tracted from the firing rate (and the response was clipped to 0). 
This corresponds to the intuition of some neurophysiologists that 
it is changes from the spontaneous firing rate that are important, 
and that is why we show it. However, this response sparseness 
measure does have problems if the neuron decreases its firing rate 
below the spontaneous rate for some stimuli, in which case it may 
be more appropriate to calculate the responses as changes from the 
lowest firing rate to any stimulus. For these reasons, more emphasis 
is placed here on the sparseness measure a as defined in the previ- 
ous paragraph on the basis of the absolute firing rates. That mea- 
sure, a, also has the advantage that in models of neuronal networks, 
it is the absolute firing rate of the input to each synapse that must 
be considered when quantifying measures such as the capacity of 
the network and the interference between stimuli (Rolls and Treves 
1990; Treves and Rolls 199 1) . 

RESULTS 

Thirty-eight olfactory neurons in the orbitofrontal cortex 
with significant differential responses to odorants presented 
during the olfactory discrimination task (shown by l-way 
ANOVAs with post hoc Newman-Keuls analysis) are the 
source of the data set analyzed here. Recordings from 1,696 
orbitofrontal neurons were performed to obtain this set of 
olfactory neurons. The responses of these neurons have been 
described elsewhere (Critchley and Rolls 1996a). Sixty per- 
cent of the 38 olfactory neurons with differential responses 
in the task showed differential selectivity for the stimuli 
based on the odor quality, and not on the taste reward associ- 
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ation of the odor. They responded, for example, to some but 
not to others of the seven olfactory stimuli that were all 
associated with the delivery of sweet taste. Forty percent of 
the 38 olfactory neurons responded on the basis of the taste 
reward association of the odorants. Such neurons responded 
either to all the rewarded stimuli and to none of the saline- 
associated stimuli, or vice versa. 

The average information I(S,R) about the set of olfactory 
stimuli available in the responses of the neurons, averaged 
across all 38 neurons, is shown in Fig. 1. The neurons re- 
flected in their firing rates on average 0.06 bits of information 
about which odorant was presented. With respect to the tem- 
poral encoding analysis, it was found that the majority of 
information was carried by the first principal component 
( -0.06 bits on average), with the second and third principal 
components (which reflect different temporal time courses 
to the first principal component) together adding less than 
a further 0.01 bits of information about the stimulus set. 
This demonstrates that little information was carried bv the 
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FIG. 3. Neuron aq107. A : distribution of the firing rates to the odor 
stimuli. The firing rate of the neuron is shown on the ordinate; the spontane- 
ous firing rate of the neuron was 6 spikes/s; and the bars are drawn to 
show changes of the firing rate from the spontaneous rate (i.e., neuronal 
responses) produced by each stimulus. See Table 1 for abbreviations of the 
odorant names. B: information I( si) available in the response of the same 
neuron about each of the stimuli (indexed by i) in the set of 7 stimuli, with 
the firing rate of the neuron to the corresponding stimulus plotted as a 
function of this on the ordinate. Black square: odorant (s) associated with 
saline. In this and some following figures, Z(si) is represented by I(,$. C: 
relation between the number of standard deviations the response to a stimu- 
lus was from the average response to all stimuli (see text, z score) plotted 
as a function of I( si), the information about the corresponding stimulus si. 

temporal firing pattern of neurons and that the major part of 
the information was carried in the firing rates of the neurons. 
The average information calculated with this method is a 
little lower than that calculated with the analytically based 
correction procedure of Treves and Panzeri ( 1995) used in 
the remainder of this paper, because the method used for 
Fig. 1 used a bootstrap correction procedure, which with the 
limited number of trials available is quite conservative in 
the information estimate produced (Tovee et al. 1993; 
Treves and Panzeri 1995). 

A histogram showing the values of I(S,R) (the average 
information in the responses of a cell about the stimulus set) 
for each cell is provided in Fig. 2. In this and the subsequent 
figures, the information measure is derived from the firing 
rate of the response. Most of the neurons had values for 
I(S,R) of <O.l bits, with the average across the population 
of neurons being 0.09 bits, as shown in Fig. 1. A few neurons 
carried >O.l bits of information, yet the majority of neurons 
carried little information about the odorant set as a whole. 
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This is despite evidence that some neurons were very selec- 
tive in their evoked firing rates to one or a few of the odor- 
ants, and that all the neurons showed a significant differential 
response in one-way ANOVAs and post hoc Newman-Keuls 
analysis. The neuronal information measure described here 
is equivalent to the average of all the information contained 
in the responses to the individual stimuli (corrected for the 
minor differences in the number of trials). If many of the 
odorants evoke a similar neuronal response, then the average 
information from the neuronal response about which odor 
was delivered is low. 

To understand the representation of individual stimuli by 
individual cells, the information l(si) available in the neu- 
ronal response about each of the stimuli (indexed by i> in 
the set of stimuli S was calculated. First we show in Fig. 
3A the response profile of a single olfactory neuron to the 
odor stimuli. The cell responded strongly to one odorant, 
eugenol, which was negatively reinforced, but did not re- 
spond well to the other odorants, which were rewarded with 
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n 

FIG. 4. A-C: similar graphs to those shown in Fig. 3, A-C, for another 

neuron, au059. 

a sweet taste. The sparseness of the representation was 0.66, 
and the average information I(S,R) provided by the cell 
across all stimuli in the set S was 0.25 bits. In Fig. 3B we 
show the information I( si> available in the neuronal response 
about each of the stimuli in the set of stimuli, plotted along 
the abscissa. It is shown that considerable information, - 1.1 
bits, could be gained from the neuronal response when one 
of the stimuli, eugenol, was presented, and that very little 
information (on average 0.01 bits of information) could be 
gained when any of the other stimuli were presented. How- 
ever, 0.37 bits of information were reflected in the neuronal 
responses to amyl acetate. 

Figure 3B also shows the relation between I( si) and the 
firing rate to the ith stimulus. The odorant eugenol, which 
was unique among the set in eliciting a high&ring rate from 
the cell, has a high information value of 1.1 bits. The neuron 
conveyed very little information about the remaining odor- 
ants, which are largely indistinguishable from each other by 
firing rates. Given that the information I( si) about the i th 
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stimulus from the neuronal response is related to the proba- 
bility that that particular response will occur, it is natural 
that the information should be closely related to the number 
of standard deviations that the response to a particular stimu- 
lus is from the mean neuronal response. The greater the 
number of standard deviations (i.e., the greater the z score) 
from the mean response value, the greater the information 
might be expected to be. Indeed, given that the firing rates 
of neurons tend often to follow a Poisson distribution (apart 
from the refractory period), for which the variance is propor- 
tional to the mean, a more proportional relationship might 
be expected between the information and the z score than 
between the information and the firing rate. We therefore 
show in Fig. 3C the relation between the z score and 1(si>. 
The z score was calculated by calculating the mean and 
standard deviation of the response of a neuron to a particular 
stimulus, and dividing the difference of this response from 
the mean response to all stimuli by the calculated standard 
deviation for that stimulus. (To the degree to which the 
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FIG. 5. A-C: similar graphs to those shown in Fig. 3, A-C, for another 
neuron, au128a. 

firing is Poisson-like, the standard deviation for a stimulus 
below the mean will be smaller than for a stimulus above 
the mean, and this will be reflected in the calculated z scores 
for stimuli below and above the mean.) It can be seen that 
most information is present on trials on which stimuli are 
presented that produce responses that are far from the mean 
response in terms of z score (eugenol and amylacetate) . The 
z scores underline the point that the variability in the firing 
rate to a particular stimulus as well as the mean response to 
that stimulus may be important. We will see soon that the 
z score is useful for cells that display a more distributed 
representation of the stimuli. 

A similar analysis for a cell with a more distributed repre- 
sentation is shown in Fig. 4. The response profile of the cell 
to the different odorants is shown-in Fig. 4A. The sparseness 
of the representation was 0.93, and the average information 
I(S,R) provided by the cell across all stimuli in the set S 
was 0.09 bits. The cell responded best to the negatively 
reinforced odorants, in this case hexylamine and vanillin, 
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yet had moderate responses to most of the rewarded odor- 
ants. The information conveyed about each odorant is plotted 
against the neuronal firing rate in Fig. 4B. The responses to 
the odorant vanillin carry the most information, almost 0.35 
bits, and the responses to the remaining odorants convey less 
information. ( The small amounts of ‘ ‘negative information’ ’ 
arise because of the correction procedure that subtracts what 
is an estimated correction from the raw information.) Associ- 
ated with the more distributed representation provided by 
the responses of the cell shown in Fig. 4, the information 
about the most effective stimulus, vanillin, does not reach 
the same level as that of the most effective stimulus, eugenol, 
for the cell shown in Fig. 3. The greater amount of informa- 
tion reflected by the response to eugenol of the cell shown 
in Fig. 3 is related to the fact that this was a low probability 
response. Another interesting aspect of the data for the cell 
shown in Fig. 4 is that hexylamine, the second most effective 
stimulus in terms of the firing rate elicited, conveys almost 
the same amount of information as the least effective stimuli 
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FIG. 6. A-C: similar graphs to those shown in Fig. 3, A-C, for another 
neuron, au1 22. 

for the cell. This emphasizes the important point that infor- 
mation could be carried by a response that is below the mean 
response to odors for the cell, again reflecting the fact that 
a low firing rate response is a relatively improbable response 
for the cell. Indeed, this point is brought out explicitly by 
the z score analysis shown in Fig. 4C, which indicates that 
the greater the number of z scores the neuronal response is 
from the mean response of the cell to all stimuli (and there- 
fore the less probable is the response), the greater is the 
information provided about that stimulus. This results in a 
C-shaped curve in Fig. 4C, with more information being 
provided by the cell the further its response to a stimulus is 
in z scores either above or below the mean response to all 
stimuli (which was 24.4 spikes/s). The result is clearer with 
the z scores than with the firing rate shown in Fig. 4B, 
because the z score takes into account the variability of the 
response. Because of the Poisson-like firing of neurons, and 
the way in which the standard deviation varies with the 
mean, the effect of transforming the firing rate to z scores 
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away from the mean is to clarify the way in which responses 
to a stimulus that are below the mean response of the cell 
to all stimuli can convey considerable information. As noted 
in the DISCUSSION, this analysis shows what information is 
available in the responses of the cell to the different stimuli. 
It is a separate issue of whether the neurons that receive 
inputs from these olfactory cells can make use of the infor- 
mation potentially available in a response to a stimulus that 
is below the mean response of the cell to olfactory stimuli, 
and if so, of what type of neuronal networks would best 
enable this information to be utilized. 

Figure 5 shows the response profile (Fig. 5A), firing rate 
versus information I( si) (Fig. 5B), and z score versus infor- 
mation I( si) (Fig. 5C) of a neuron maximally responsive to 
the rewarded odorant caprylic acid but much less responsive 
to the rewarded odorant butyric acid. [The sparseness of the 
representation was 0.97, and the average information I( S,R) 
provided by the cell across all stimuli in the set S was 0.16 
bits.] The caprylic acid responses carry >0.57 bits of infor- 
mation. The responses to the butyric acid convey 0.63 bits 
of information. Figure 5C shows that both the caprylic acid 
and the butyric acid elicit neuronal responses that have a 
low probability with respect to the mean overall firing rate 
of the neuron (47.7 spikes/s) to the set of odor stimuli S. 
The information I( si) contained in the responses to butyric 
acid illustrates the phenomenon described above in which 
low firing rates, in this case not different from the spontane- 
ous rate, may carry information if they are improbable or 
unique. 

Figure 6 illustrates the responses of a similar neuron, re- 
sponsive to the odorant vanillin, and again not responsive 
to butyric acid. [The sparseness of the representation was 
0.90, and the average information I(S,R) provided by the 
cell across all stimuli in the set S was 0.13 bits.] The vanillin 
odorant responses carry 0.46 bits of information, and the 
very small responses (relative to the spontaneous firing rate 
of the neuron) to butyric acid carry 0.49 bits of information. 
The curves of firing rate against information (Fig. 6B) and 
of z scores against information (Fig. 6C) illustrate the C- 
shaped curve of the relationship between information and 
the neuronal response. The overall mean firing rate across 
all stimuli was 32.8 spikes/s. 

It has been shown previously that the reward value of the 
odorants may strongly influence the responses of some 
( 35%) of these particular neurons in the olfactory discrimi- 
nation task (Critchley and Rolls 1996a). To determine the 
degree to which information is reflected about the reinforce- 
ment value of the odorants, information theoretic analysis 
was applied to the responses to stimuli that were grouped 
as rewarded odorants and saline-associated odorants. In a 
similar manner, to quantify the amount of information con- 
cerning stimulus quality independently of reward value, in- 
formation analysis was performed on the responses of each 
cell to only the reward-associated odorants. (There were 
6-17 reward-associated odorants and l-2 saline-associated 
odorants when each neuron was tested.) Table 2 shows the 
average information conveyed by the responses of each neu- 
ron about the reinforcement value of odorants and about the 
identity of the odorants. (The information about identity 
was calculated from the 6 or 7 stimuli that were all equally 
associated with reward, so that differences in their firing 

TABLE 2. Information provided by each cell about odor 

identity versus reward value 

Cell 

aq10.5 

aq107 
aq078b 
au037b 
au011 
au114 
au059 
au079 
aq079 
au037a 
au161 
au070 
aq112 
au031 
au097 
au032a 
au032b 
au030 
au086 
au033 
au083 
au150 
auOlOa 
au119 
au034 
aq092 
au005 
au071 
au122 
au028 
aq078a 
aqll3b 
au089 
au159 
au111 
au142 
au128a 
ad.58 

Information Information 
About Reward About Odor 

Value Identity 

0.23 1 0.072 

0.199 0.035 
0.196 0.196 
0.122 0 
0.106 0 
0.074 0.010 
0.069 0.022 
0.063 0.139 
0.058 0.047 
0.05 1 0.011 
0.050 0.023 
0.049 0.019 
0.044 0.006 
0.042 0 
0.042 0 
0.04 1 0.082 
0.040 0.126 
0.032 0.41 
0.042 0 
0.020 0.080 
0.019 0.009 
0.018 0 
0.016 0.029 
0.016 0.065 
0.015 0.032 
0.008 0.025 
0.003 0.300 
0.002 0 
0.002 0.082 
0.001 0.016 
0.001 0.033 
0.000 0.113 
0 0.102 
0 0.049 
0 0.121 
0 0.070 
0 0.167 
0 0.061 

reflected the identity of the odor stimulus presented.) Where 
the information analysis produced a negative value, this is 
denoted as 0. It can be seen that the average information 
about the odorant identity is low (cf. Tovee et al. 1993 for 
visual cells). The most information that any one cell con- 
veyed about odorant quality was 0.30 bits and the average 
information I(S,R) over the 38 neurons about which of the 
rewarded odorants was delivered is 0.06 bits. This indicates 
that although the cells often respond robustly to the presence 
of odorants, neurons in this population do not individually 
express much information about odorant quality. Instead 
they are likely to contribute to a very distributed representa- 
tion of information about which odorant is present. The in- 
formation conveyed by the neurons about the reward value 
of the odorants averaged 0.04 bits, with 5 cells conveying 
>O.l bits of information about the taste reinforcement asso- 
ciation. Figure 7 shows for each cell the information about 
the reinforcement association of *the odor (ordinate) as a 
function of the information about which odor was delivered 
(with reinforcement constant). It can be seen that at least 
some neurons appear to reflect primarily taste quality, and 
others the reinforcement association. The larger amount of 
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FIG. 7. Average information for each cell about the reinforcement asso- 
ciation of the odor (ordinate), plotted as a function of the information about 
which odor was delivered. 

information carried by some neurons about the reinforce- 
ment value of the stimuli adds to further evidence described 
elsewhere (Critchley and Rolls 1996a) that the responses of 
some olfactory neurons in the primate orbitofrontal cortex 
are strongly influenced by the taste association of odorants. 

To further show the extent to which these neurons can 
contribute to the discrimination of odorants independently 
of reward association, the information about each of the 
rewarded odorants was calculated for each neuron. Figure 8 
shows the mean responses over the neurons to the individual 
rewarded odorants. Each bar represents the mean of 38 neu- 
rons, except for eugenol, which is derived from the 30 neu- 
rons in which eugenol was rewarded. It can be seen that the 
overall representation of each odorant is approximately equal 
in terms of the firing rate of the neurons, each of the odorants 
evoking between 16 and 20 spikes/s averaged across the 
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Mean evoked firing rate to each of the odorants (of equal rein- 
forcement value), averaged across 30 neurons for eugenol and across 38 
neurons for the remaining odorants. 
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FIG. 9. Values of the information about any 1 stimulus, I( si), averaged 
across 30 neurons for eugenol and across 38 neurons for the remaining 
odorants. 

population of cells. Figure 9 shows the corresponding bar 
plot for the averages of the information I&) held about 
each odorant i. Overall, high levels of information are not 
conveyed about which odor was presented by the responses 
to the set of odorants that were a set in that they were 
all equally associated with reward. Figure 9 shows that the 
average information about each of the odorants conveyed 
by this population of neurons was between 0.02 and 0.08 
bits. The least amount of information, on average 0.02 bits, 
was reflected in the responses of the cells to caprylic acid. 
This is an indication that the response to caprylic acid was 
consistently more similar than the other odorants to the aver- 
age responses of the neurons. For only a very few neurons 
(e.g., Fig. 5) was the response to caprylic acid clearly differ- 
ent from the mean to other odorants. 

The data above indicate that the encoding of information 
about odorants in this population of neurons is likely to be 
achieved by very distributed encoding. To quantify this, the 
measure a of the sparseness of the representation was calcu- 
lated. The sparseness measure indicates the length of the tail 
of the distribution of neuronal responses to the stimuli, such 
that low values indicate high selectivity to one or a few of 
the stimuli in the set, and a value of 1.0, if the neurons had 
binary firing rates (e.g., firing or not), would indicate equal 
responses to all the stimuli. Sparseness was calculated in the 
manner described in the METHODS section, and was per- 
formed from the raw firing rates of the neurons (a), and 
from the responses of the neurons with the spontaneous sub- 
tracted with clipping at zero response a,. 

Figure 10 shows the sparsenesses a of the neuronal re- 
sponses to the rewarded odorants. It can be seen that all the 
neurons had high values for a, that is the coding was very 
distributed. The mean value for a was 0.936, indicating a 
very distributed encoding of odorant quality in these cells. 
The response sparseness a, (based on the evoked responses 
minus the spontaneous firing of the neuron) is shown in Fig. 
11. The mean of the response sparseness was 0.78. 

The sites at which these neurons were recorded are shown 
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mation about the stimulus (Linsker 1992). Third, the infor- 
mation about each individual stimulus, I( si), could be shown 
to be simply related to the type of tuning shown by the 
neuron. If the neuron responded mainly to one odor in the 
set, then high information about that stimulus was provided 
by the firing of the neuron to that stimulus, and little informa- 
tion was provided about the other stimuli. This is local en- 
coding. If, on the other hand, the neuron used very distrib- 
uted encoding, then information about several individual 
stimuli could be provided by the rate of firing of the neuron, 
and the amount of information could be shown to be simply 
related to the probability of the neuron responding differently 
to a particular stimulus relative to the overall mean response 
of the neuron to all stimuli, as reflected by the z score mea- 
surements. Of particular interest was that for such neurons, 
significant information was potentially available if the neu- 
ron responded much less to one or some of the odors than 
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FIG. 10. Distribution of sparseness values a for the population of cells, 
calculated across the set of odorants of equal reinforcement value. The 
mean sparseness was 0.94 + 0.05 (SD). 

Comparison with 
other modalities 

information conveyed by neurons in 

Information theoretic analysis has been applied to the re- 
sponses of temporal lobe visual neurons responsive to faces 
(Rolls and Tovee 1995; Tovee et al. 1993) and to orbitofron- 
tal taste-responsive neurons (Critchley and Rolls, unpub- 
lished data). These studies can be compared with each other 
and with the results presented here for olfactory neurons, 
because they use a similar method for the calculation of raw 
information measures and a correction procedure to correct 
for the low number of trials to each stimulus. For the face- 
responsive neurons in the superior temporal sulcus temporal 
lobe region, Tovee et al. ( 1993) and Rolls and Tovee ( 1995) 
showed that the average information I(S,Z?) conveyed by 
these neurons was between 0.3 and 0.6 bits (information 
measures derived from the firing rate or from the 1st princi- 
pal component were shown to be largely equivalent). Face- 
responsive units held 0.4 bits of information about a set of 
20 faces (Rolls and Tovee 1995). For taste-responsive neu- 

in Fig. 12. The majority of the neurons were in the orbito- 
frontal cortex, with four in the neighboring 
pyriform cortex, ventral stri .atum, and insula. 

regions of the 

DISCUSSION 

The results described above provide a quantitative analy- 
sis of the information represented by olfactory neurons in 
the orbitofrontal cortex, and of how it is represented. Some 
of the main conclusions are as follows. First, the average 
information about the set of stimuli, I(S,R), is low on aver- 
age for the population of neurons. This implies that a large 
ensemble of neurons is needed to represent the set of odors 
sufficiently to allow identification of which odor was pre- 
sented. Studies are in progres s to determ ine what the minimal 
size of this ensemble would need to be to enable identifica- 
tion of this set of eight odors. A comparison with the average 
information provided by neurons in other modalities is given 
below. The relatively low information about odors repre- 
sented by this population of neurons may reflect the situation 
that primates are not especially good at identifying which 
particular odor in a large set was presented, that is that 
olfaction is not a modality in which many different stimuli 
can be clearly and separately represented. Another possibil- 
ity is that there are neurons in other parts of the olfactory 
system that are very good at representing the stimulus space 
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are more involved in coding odors in relation not to their i 
stimulus quality but to their association with events in other 
modalities, such as whether the odor is associated with a 
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good taste. Certainly some of the neurons in this region are 
influenced by taste reward association, and because of this, 2- 

such neurons would become less effective at representing 
the stimulus quality. Second, the tuning of most of the orbito- o,, (, , , 

frontal olfactory neurons is broad, with high values for the 
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sparseness measure a. Broad tuning (i.e., distributed encod- Sparseness from response 

ing) of this type may be particularly effective when the FIG. 11. 

system is noisy, that is, when there is relatively little infor- 
As Fig. 10, but response sparseness values a, are shown. The 

mean response sparseness was 0.78 2 0.19 (SD). 
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FIG. 12. Sites at which the neurons 
in the caudally adjacent olfactory areas 

were recorded. The majority of the neurons were in the orbitofrontal cortex, with 4 

m Sphenoid 

rons also in the primate orbitofrontal cortex encountered in 
this study, 0.43 bits of information were conveyed in the 
neuronal responses to the stimuli, glucose, HCl, NaCl, qui- 
nine, monosodium glutamate, and distilled water. In the pres- 
ent study, 0.09 bits of information were contained within 
the responses of orbitofrontal olfactory cells to the odorants 
in the olfactory discrimination task. The following factors 
may contribute to the low information and high sparseness 
measures of the orbitofrontal olfactory neuron. First, there 
is generally much more variation in the responses of the 
olfactory neurons to the odorants. (The more noisy the neu- 
ronal response, the less information it will reflect about the 
stimulus.) This is likely to be the result of different latencies 
in the sniffs made by the monkey in order to sample the 
odorants. Because these sniff responses need to be integrated 
with the normal respiratory cycle of the monkey, a degree 
of variation is unavoidable. Attempts to reduce this were 
made; a cue tone was sounded before the onset of odorant 
deliveries, and the monkey did generally start to sniff just 
as the tone ended. Also, the presence of saline-associated 
odorants required the monkey to be attentive to and sample 
each odorant before making a lick response within the l-s 
duration of the odorant presentations. This provided some 
temporal restriction of the sniffs. The relatively fixed onset 

for the reasons stated not as good as can be obtained with 
visual neurons when a monkey is performing a visual fixa- 
tion task (Rolls and Tovee 1995; Tovee et al. 1993). 

Information contained within the spike train 

The average information in the responses of the olfactory 
neurons to the stimulus set was 0.06 bits (calculated with 
the bootstrap method used for Fig. 1) . Analysis of the contri- 
bution of the firing rate and first three principal components 
of the response spike train, showed that the first principal 
component conveyed the major part of the information about 
odorants (see Fig. 1) . The first principal component is highly 
correlated with the firing rate of the neurons. Higher princi- 
pal components do not contribute much information. This 
indicates that at least for orbitofrontal olfactory neurons, 
temporal encoding does not have a large role in the represen- 
tation of odors. This parallels similar findings for face-re- 
sponsive visual neurons in the temporal lobe visual cortex 
by Tovee et al. ( 1993) and Rolls and Tovee ( 1995). 

The analyses shown in Figs. 3, 23 and C, 4, B and C, 5, 
B and C, and 6, B and C, show that the information reflected 
in the neuronal response when a particular stimulus was 
delivered was related to how far the firing rate to that stimu- 

latencies of some of the neurons recorded provided evidence lus was from the mean firing rate to all stimuli. The relation- 
that the odor sampling in the task was adequate, although ship was stronger when the number of standard deviations 
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of the response to a stimulus from the mean response to all 
stimuli was considered (Figs. 3-6C). This relationship 
arises because the information measure reflects how proba- 
ble the response is, and most information is gained when 
improbable responses occur. We note that because the ques- 
tion being asked is which stimulus was delivered, the rele- 
vant comparison is the mean response to all stimuli. If the 
question had been about whether an olfactory stimulus was 
delivered, then the data would have been collected differ- 
ently, with many trials with no olfactory stimulus, and the 
relevant comparison would have been to the spontaneous 
firing rate. At the same time, we can note that the information 
provided by a neuron, both on average across the stimulus 
set, and about each odor in the set, does depend on the 
stimulus set used. For example, if a stimulus set with very 
similar odors is used, then the average information provided 
by a neuron will be low. In another example, if there were 
only two odors in the set, the maximum information that 
could be provided would be 1 bit. 

Encoding of stimulus quality and reinforcement value 

The indication that many of these orbitofrontal olfactory 
neurons are concerned more with the representation of the 
reinforcement association of the odorants rather than the 
discrimination of odorants of equal reward values comes 
from the analysis of the average amount of information held 
by the neurons about the reward association, and about the 
identity of odorants independent of reward association (see 
Table 2 and Fig. 7). Some neurons reflected information 
primarily about odor identity, and others about odor associa- 
tion. In a number of cases, when very selective responses 
of these orbitofrontal neurons do occur, this is usually due 
to differences in the reinforcement association of the stimuli 
to which the neuron responds differently (Critchley and 
Rolls 1996a). This is important in understanding the purpose 
of the olfactory representation in the orbitofrontal cortex. 
One means by which this might occur is by associative learn- 
ing between odor and taste, in such a way that an initially 
broadly tuned olfactory neuron might by virtue of specific 
taste inputs come to respond to the odors associated with 
one but not with another taste. This would give rise to the 
cross-modal correspondence described by Rolls and Baylis 
( 1994). Further evidence for such a mechanism in primates 
is provided elsewhere, although associative learning between 
odor and taste is relatively slow and inflexible compared with 
visual-to-taste association learning (see Rolls et al. 1996). 
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