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Abstract

A very simple model of two reciprocally connected attractor neural net-
works is studied analytically in situations similar to those encountered
in delay match-to-sample tasks with intervening stimuli and in tasks of
memory guided attention. The model qualitatively reproduces many of
the experimental data on these types of tasks and provides a framework
for the understanding of the experimental observations in the context of
the attractor neural network scenario.

1 Introduction

Working memory is usually defined as the capability to actively hold information in mem-
ory for short periods of time. In primates, visual working memory is usually studied in
experiments in which, after the presentation of a given visual stimulus, the monkey has
to withhold its response during a certain delay period in which no specific visual stimulus
is shown. After the delay, another stimulus is presented and the monkey has to make a
response which depends on the interaction between the two stimuli. In order to bridge the
temporal gap between the stimuli, the first one has to be held in memory during the delay.
Electrophysiological recordings in primates during the performance of this type of tasks
has revealed that some populations of neurons in different brain areas such as prefrontal
(PF), inferotemporal (IT) or posterior parietal (PP) cortex, maintain approximately con-
stant firing rates during the delay periods (for a review see [1]) and this delay activity states
have been postulated as the internal representations of the stimuli provoking them [2]. Al-
though up to now most of the modeling effort regarding the operation of networks able to
support stable delay activity states has been put in the study of uni-modular (homogeneous)
networks, there is evidence that in order for the monkey to solve the tasks satisfactorily, the
interaction of several different neural structures is needed. A number of studies of delay
match-to-sample tasks with intervening stimuli in primates performed by Desimone and
colleagues has revealed that although IT cortex supports delay activity states and shows



memory related effects (differential responses to the same, fixed stimulus depending on its
status on the trial, e.g. whether it matches or not the sample), it cannot, by itself, provide
the information necessary to solve the task, as the delay activity states elicited by each of
the stimuli in a sequence are disrupted by the input information associated with each new
stimulus presented [3, 4, 5]. Another structure is therefore needed to store the information
for the whole duration of the trial. PF cortex is a candidate, since it shows selective delay
activity maintained through entire trials even with intervening stimuli [6]. A series of par-
allel experiments by the same group on memory guided attention [7, 8] have also shown
differential firing of IT neurons in response to thesamevisual stimulus shown after a delay
(an array of figures), depending on previous information shown before the delay (one of
the figures in the array working as a target stimulus). This evidence suggests a distributed
memory system as the proper scenario to study working memory tasks as those described
above. Taking into account that both IT and PF cortex are known to be able to support
delay activity states, and that they are bi-directionally connected, in this paper we propose
a simple model consisting of two reciprocally connected attractor neural networks to be
identified with IT and PF cortex. Despite its simplicity, the model is able to qualitatively
reproduce the behavior of IT and PF cortex during delay match-to-sample tasks with in-
tervening stimuli, the behavior of IT cells during memory guided attention tasks, and to
provide an unified picture of these experimental data in the context of associative memory
and attractor neural networks.

2 Model and dynamics

The model network consists of a large number of (excitatory) neurons arranged in two
modules. Following [9, 10], each neuron is assumed to be a dynamical element which
transforms an incoming afferent current into an output spike rate according to a given
transduction function. A given afferent currentIai to neuroni �i � �� � � � � N� in modulea
�a � IT�PF� decays with a characteristic time constantT but increases proportionally to
the spike rates�bj of the rest of the neurons in the network (both from inside and outside
its module) connected to it, the contribution of each presynaptic neuron, e.g. neuronj from
moduleb, being proportional to the synaptic efficacyJ ab

ij between the two. This can be
expressed through the following equation
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An external currenth�ext�ai from outside the network, representing the stimuli, can also
be imposed on every neuron. Selective stimuli are modeled as proportional to the stored
patterns, i.e.h

��ext�

ai � ha�
�
ai, whereha is the intensity of the external current to modulea.

The transduction function of the neurons transforming currents into rates has been chosen
as a threshold hyperbolic tangent of gainG and threshold�.

The synaptic efficacies between the neurons of each module and between the neurons in
different modules are respectively [11]
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The intra-modular connections express the learning ofP binary patternsf��
ai � �� �� � �

�� � � � � Pg by each module, each of them signaling which neurons are active in each of



the sustained activity configurations. Each variable�
�
ai is supposed to take the values�

and� with probabilitiesf and �� � f� respectively, independently across neurons and
across patterns. The inter-modular connections reflect the temporal associations between
the sustained activity states of each module. In this way, every stored pattern� in the IT
module has an associated pattern in the PF module which is labelled by the same index.
The normalization constantNt � N�J� � g� has been chosen so that the sum of the
magnitudes of the inter- and the intra-modular connections remains constant and equal to
� while their relative values are varied. When this constraint is imposed the strength of
the connections can be expressed in terms of a single independent parameterg measuring
the relative intensity of the inter- vs. the intra-modular connections (J� can be set equal
to � everywhere). We will limit our study to the case where the number of stored patterns
per moduleP does not increase proportionally to the size of the modulesN since a large
number of stored patterns does not seem necessary to describe the phenomenology of the
delay match-to-sample experiments.

Since the number of neurons in a typical network one may be interested in is very large,
e.g.� ��� � ���, the analytical treatment of the set of coupled differential equations (1)
becomes intractable. On the other hand, when the number of neurons is large, a reliable de-
scription of the asymptotic solutions of these equations can be found using the techniques
of statistical mechanics [12, 9]. In this framework, instead of characterizing the states
of the system by the state of every neuron, this characterization is performed in terms of
macroscopicquantities calledorder parameterswhich measure and quantify some global
properties of the network as a whole. The relevant order parameters appearing in the de-
scription of our system are the overlaps of the state of each module with each of the stored
patternsm�

a , defined as:
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where the symbol� � � ��� stands for an average over the stored patterns.

Using the free energy per neuron of the system at zero temperatureF (which we do not
write explicitly to reduce the technicalities to a minimum) we have modeled the experi-
ments by giving the order parameters the following dynamics:
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This dynamics ensures that the stationary solutions, corresponding to the values of the
order parameters at the attractors, correspond also to minima of the free energy, and that,
as the system evolves, the free energy is always minimized through its gradient. The time
constant of the macroscopic dynamics is a free parameter which has been chosen equal to
the time constant of the individual neurons, reflecting the assumption that neurons operate
in parallel. Its value has been set toT � �� ms. Equations (5) have been solved by a
simple discretizing procedure (first order Runge-Kutta method).

Since not all neurons in the network receive the same inputs, not all of them behave in
the same way, i.e. have the same firing rates. In fact, the neurons in each of the module
can be split into different sub-populations according to their state of activity in each of
the stored patterns. The mean firing rate of the neurons in each sub-population depends
on the particular state realized by the network (characterized by the values of the order
parameters). Associated to each pattern there are two larger sub-populations, to be denoted
as foreground (all active neurons) and background (all inactive neurons) of that pattern.
The overlap with a given pattern can be expressed as the difference between the mean firing
rate of the neurons in its foreground and its background. The average is performed over all



other sub-populations to which each neuron in the foreground (background) may belong
to, where the probability of a given sub-population is equal to the fraction of neurons in
the module belonging to it (determined by the probability distribution of the stored patterns
as given above). This partition of the neurons into sub-populations is appealing since, in
experiments, cells are usually classified in terms of their response properties to a set of
fixed stimuli, i.e. whether each stimulus is effective or ineffective in driving their response.

The modeling of the different experiments proceeded according to the macroscopic dynam-
ics (5), where each stimulus was implemented as an extra current for a desired period of
time.

3 Sequence with intervening stimuli

In order to study delay match-to-sample tasks with intervening stimuli [5, 6], the module
to be identified with IT was sequentially stimulated with external currents proportional to
some of the stored patterns with a delay between them. To take into account the large
fraction of PF neurons with non-selective responses to the visual stimuli (which may be
involved in other aspects of the task different from the identification of the stimuli), and
since the neurons in our modules are, by definition, stimulus selective (although they are
probably connected to the non-selective neurons) a constant, non-selective current of the
same intensity as the selective input to the IT module was applied (during the same time)
equally to all sub-populations of the PF module. The external current to the IT module was
stimulus selective because the fraction of IT neurons with non-selective responses to the
visual stimuli is very small [6]. The results can be seen in Figure 1 where the sequence
ABA with A as the sample stimulus andB as a non-matching stimulus has been studied.
The values of the model parameters are listed in the caption. In Figure 1a, the mean firing
rates of the foreground populations of patternsAIT andBIT of the IT module have been
plotted as a function of time. The main result is that, as observed in the experiments, the
delay activity in the IT module is determined by the last stimulus presented. The delay
activity provoked by a given stimulus is disrupted by the next, unless it corresponds to the
same stimulus, in which case the effect of the stimulus is to increase the firing rate of the
neurons in its foreground. We have checked that no noticeable effects occur if more non-
matching stimuli are presented (they are all equivalent with respect to the sample) or if a
non-match stimulus is repeated.
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Figure 1: �a� Mean rates in the foreground of patternsAIT (solid line) andBIT (dashed
line) in the IT module as a function of time.�b� Same but for patternsAPF andBPF of the
PF module. Model parameters areG � ���, � � ����, f � ��	, g � ���	, h � ����.
Stimuli are presented during
��ms at seconds�, �, and�.



If the couplingg between the modules is weak enough [11] the behavior in the PF module
is different. This can be seen in Figure 1b, where the time evolution of the mean firing rates
of the foreground of the two associated patternsAPF andBPF stored in the PF module are
shown. In agreement with the findings of Desimone and colleagues, the neurons in the
PF module remain correlated with the sample for the whole trial, despite the non-selective
signal received byall PF neurons (not only those in the foreground of the sample) and the
fact that the selective current from the IT module tends to activate the pattern associated
with thecurrentstimulus.

Desimone and colleagues [5, 6] report that the response of some neurons (not necessarily
those with sample selective delay activity or with stimulus selective responses) in both IT
and PF cortex to some stimuli, is larger if those stimuli are matches in their trials than if
the same stimuli are non-matches. This has been denoted asmatch enhancement. In the
present scenario the explanation is straightforward: when a stimulus is a non-match, IT and
PF are in different states and therefore send inconsistent signals to each other. The firing
rate of the neurons of each module is maintained in that case solely by the contribution
to the total current coming from the recurrent collaterals. On the other hand, when the
stimulus is the match, both modules find themselves in states associated in the synapses
between the neurons connecting them, PF because it has remained that way the whole trial,
and IT because it is driven by the current stimulus. When this happens, the contribution
to the total current from the recurrent collaterals and from the long range afferents add up
consistently, and the firing rate increases. In order for this explanation to hold there should
be a correlation between the top-down input from PF and the sensory bottom-up signal to
IT. Indeed, experimental evidence for such a correlation has very recently been found [13].
This is an important experimental finding which supports our theory.

Looking at Figure 1, one sees that the effect is not evident in the model during the time
of stimulus presentation, which is the period where it has been reported. The effect is, in
fact, present, although its magnitude is too small to be noticeable in the figure. We would
argue, however, that this quantitative difference is an artifact of the model. This is because
the enhancement effect is very noticeable on thedelayperiods, where essentially the same
neurons are active as during the stimulus presentations (i.e., where the same correlations
between the top-down and bottom-up signals exist) but with lower firing rates. During
stimulus presentations the firing rates are closer to the saturation regime, and therefore the
dynamical response range of the neurons is largely reduced.

4 Memory guided attention

To test the differential response of cells as a function of the contents of memory, we have
followed [7, 8] and studied a sub-population of IT cells which are simultaneously in the
foreground of one of the patterns (AIT) and in the background of another (BIT) in thesame
conditions as the previous section (samemodel parameters). In Figure 2a the response
of this sub-population as a function of time has been plotted in two different situations.
In the first one, the effective stimulusAIT was shown first (throughout this section non
selective stimulation of PF proceeded as in the last section) and after a delay, a stimulus
array equal to the sum ofAIT and BIT was presented. The second situation is exactly
equal, except for the fact that the cue stimulus shown first was the ineffective stimulusBIT.
The response of thesamesub-population to thesamestimulus array is totally different and
determined by the cue stimulus: If the sub-population is in the background of the cue, its
response is null during the trial except for the initial period of the presentation of the array.
In accordance with the experimental observations [7, 8], its response grows initially (as
one would expect, since during the array presentation time, stimulation is symmetric with
respect ofA andB) but is later suppressed by the top-down signal being sent by the PF
module. This suppression provides a clear example of a situation in which the contents



of memory (in the form of an active PF activity state) are explicitly gating the access of
sensory information to IT, implementing a non-spatial attentional mechanism.
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Figure 2: �a� Mean rates as a function of time in IT neurons which are both in the fore-
groundAIT and in the background ofBIT when the cue stimulus isAIT (solid line) orBIT

(dashed line).�b� Mean rates of the same neurons whenCIT is the cue stimulus and the
array isAIT alone (long dashed line),BIT alone (short dashed line) or the sum ofAIT and
BIT (solid line). Cue present until
�� ms. Array present from���� ms to �
�� ms.
Model parameters as in Figure 1

In the model, the PF module remains in a state correlated with the cue during the whole
trial (to our knowledge there are no measurements of PF activity during memory guided
attention tasks) and therefore provides a persistent signal ’in the direction’ of the cue which
biasesthe competition betweenAIT andBIT established at the onset of the array. This
is how the gating mechanism is implemented. The competitive interactions between the
stimuli in the array are studied in Figure 2b, which is an emulation of thetarget-absenttrials
of [8]. In this figure, the same sub-population is studied under situations in which the cue
stimulus is not present in the array (another one of the stored patterns, i.e.CIT) The three
curves correspond to different arrays: The effective stimulus alone, the ineffective stimulus
alone, and a sum of the two as in the previous experiment. In all three, the PF module
remains in a sustained activity state correlated withCIT the whole trial and therefore, since
the patterns are independent, the signal it sends to IT is symmetric with respect ofA and
B. Thus, the response of the sub-population during the array is in this case unbiased, and
the effect of the competitive interactions can be isolated. The result is that, as observed
experimentally, the response to the complex array is intermediate between the one to the
effective stimulus alone and the one to the ineffective stimulus alone. The nature of the
competition in an attractor network like the one under study here is based on the fact that
complex stimulus combinations are not stored in the recurrent collaterals of each module.
These connections tend to stabilize the individual patterns which, being independent, tend
to cancel each other when presented together. After the array is presented, the state of the
IT module, which is correlated withCIT in the initial delay, becomes correlated withAIT

or BIT if they are presented alone. When the array contains both of them in a symmetric
fashion, since the sum of the patterns is not a stored pattern itself, the IT module remains
correlated with patternCIT due to the signal from the PF module.

5 Discussion

We have proposed a toy model consisting of two reciprocally connected attractor mod-
ules which reproduces nicely experimental observations regarding intra-trial data in delay



match-to-sample and memory guided attention experiments in which the interaction be-
tween IT and PF cortex is relevant. Several important issues are taken into account in the
model: a complex interaction between the PF and IT modules resultant from the associa-
tion of frequent patterns of activity in both modules, delay activity states in each module
which exert mutually modulatory influences on each other, and a common substrate (we
emphasize that the results on Sections 3 and 4 where obtained with exactly the same model
parameters, just by changing the type of task) for the explanation of apparently diverse
phenomena.

Perception is clearly an active process which results from the complex interactions be-
tween past experience and incoming sensory information. The main goal of this model was
to show that a very simple associational (Hebbian) pattern of connectivity between a per-
ceptual module and a ’working memory’ module can provide the basic ingredients needed
to explain coherently different experimentally found neural mechanisms related to this pro-
cess. The model has clear limitations in terms of ’biological realism’ which will have to
be improved in order to use it to make quantitative predictions and comparisons, and does
not provide a complete an exhaustive account of the very complex and diverse phenomena
in which temporo-frontal interactions are relevant (there is, for example, the issue of how
to reset PF activity in between trials [14]). However, it is precisely the simplicity of the
mechanism it provides and the fact that it captures the essential features of the experiments,
despitebeing so simple, what makes it likely that it will remain relevant after being refined.
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