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16.1 Introduction

This chapter describes memory systems in the brain based on closely linked neuro-
biological and computational approaches. The neurobiological approaches include
evidence from brain lesions which show the type of memory for which each of the
brain systems considered is necessary; and analysis of neuronal activity in each of
these systems to show what information is represented in them, and the changes that
take place during learning. Much of the neurobiology considered isfrom non-human
primates as well as humans, because the operation of some of the brain systems
involved in memory and connected to them have undergone great development in
primates. Some such brain systems include those in the temporal 1obe, which devel-
ops massively in primates for vision, and which sends inputs to the hippocampus via
highly devel oped parahippocampal regions; and the prefrontal cortex. Many memory
systems in primates receive outputs from the primate inferior temporal visual cortex,
and understanding the perceptual representations in this of objects, and how they are
appropriate as inputs to different memory systems, helps to provide a coherent way
to understand the different memory systemsin the brain (see [82], which provides a
more extensive treatment of the brain architectures used for perception and memory).
The computational approaches are essential in order to understand how the circuitry
could retrieve as well as store memories, the capacity of each memory system in the
brain, the interactions between memory and perceptual systems, and the speed of
operation of the memory systems in the brain.

The architecture, principles of operation, and properties of the main types of network
referred to here, autoassociation or attractor networks, pattern association networks,
and competitive networks, are described by [82] and [92].

16.2 Functions of the hippocampus in long-term mem-
ory

The inferior temporal visual cortex projects via the perirhinal cortex and entorhi-
nal cortex to the hippocampus (see Figure 16.1), which is implicated in long term
memory, of, for example, where objects are located in spatial scenes, which can be
thought of as an example of episodic memory. The architecture shown in Figure
16.1 indicates that the hippocampus provides a region where visual outputs from the
inferior temporal visual cortex can, via the perirhinal cortex and entorhinal cortex,
be brought together with outputs from the ends of other cortical processing streams.
In this section, we consider how the visual input about objectsisin the correct form
for the types of memory implemented by the perirhinal and hippocampal systems,
how the hippocampus of primates contains a representation of the visual space being
viewed, how this may be similar computationally to the apparently very different
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representation of placesthat is present in the rat hippocampus, how these spatial rep-
resentations are in aform that could be implemented by a continuous attractor which
could be updated in the dark by idiothetic inputs, and how a unified attractor theory
of hippocampal function can be formulated using the concept of mixed attractors.
The visual output from the inferior temporal visual cortex may be used to provide
the perirhinal and hippocampal systems with information about objects that is useful
invisual recognition memory, in episodic memory of where objects are seen, and for
building spatial representations of visual scenes. Before summarizing the computa-
tional approaches to these issues, we first summarize some of the empirical evidence
that needs to be accounted for in computational models.

16.2.1

Effects of damage to the hippocampus and connected structures on
object-place and episodic memory

Partly because of the evidence that in humanswith bilateral damage to the hippocam-
pus and nearby parts of the temporal lobe, anterograde amnesia is produced [100],
there is continuing great interest in how the hippocampus and connected structures
operate in memory. The effects of damage to the hippocampus indicate that the very
long-term storage of at least some types of information is not in the hippocampus,
at least in humans. On the other hand, the hippocampus does appear to be necessary
to learn certain types of information, that have been characterized as declarative, or
knowing that, as contrasted with procedural, or knowing how, which is spared in
amnesia. Declarative memory includes what can be declared or brought to mind as
aproposition or an image. Declarative memory includes episodic memory (memory
for particular episodes), and semantic memory (memory for facts) [100].

In monkeys, damage to the hippocampus or to some of its connections such as the
fornix produces deficits in learning about where objects are and where responses
must be made (see[12]) and [76]. For example, macagues and humans with damage
to the hippocampus or fornix are impaired in object-place memory tasksin which not
only the objects seen, but where they were seen, must be remembered [28, 60, 99].
Such object-place tasks require a whole-scene or snapshot-like memory [25]. Also,
fornix lesions impair conditional left-right discrimination learning, in which the vi-
sual appearance of an object specifies whether aresponse isto be made to the left or
theright [94]. A comparable deficit isfound in humans [61]. Fornix sectioned mon-
keysare alsoimpaired in learning on the basis of aspatial cue which object to choose
(e.g. if two objects are on the left, choose object A, but if the two objects are on the
right, choose object B) [26]. Further, monkeys with fornix damage are also impaired
in using information about their place in an environment. For example, [27] found
learning impairments when the position of the monkey in the room determined which
of two or more objects the monkey had to choose. Rats with hippocampal lesions are
impaired in using environmental spatial cuesto remember particular places [35, 45],
and it has been argued that the necessity to utilize allocentric spatial cues [14], to
utilize spatial cues or bridge delays [34, 37], or to perform relational operations on



500 Computational Neuroscience: A Comprehensive Approach

Neocortex E
Parietal Prefrontal Temporal

|
|
X A 7 I
' I / Neocortex |
\ | , eocortex |
\ I / «|-4-~ 1
1 S |
Parahippocampal Perirhinal D4 |
gyrus cortex PG —
"\ ,‘ & perirhinal
\ /
\ /
\ /

2

i —
345
Entorhinal 41‘;_ _
cortex PP Entothinal
Dentate DG Subi- Presubi-
granule Subiculum culum culum
cells
O]
mf =
CA3 CA3 CAl
—— CAl Nucleus Mammillary
cccumbens bodies ant. nuc.

of the thalamus

Figure 16.1

Forward connections (solid lines) from areas of cerebral association neocortex
via the parahippocampal gyrus and perirhinal cortex, and entorhinal cortex,
to the hippocampus; and backprojections (dashed lines) via the hippocampal
CA1 pyramidal cells, subiculum, and par ahippocampal gyrusto the neocortex.
Thereis great convergence in the forward connections down to the single net-
work implemented in the CA3 pyramidal cells; and great divergence again in
the backprojections. Left: block diagram. Right: more detailed representation
of some of the principal excitatory neuronsin the pathways. Abbreviations: D,
Deep pyramidal cells; DG, dentate granule cells; F, forward inputsto areas of
the association cortex from preceding cortical areasin the hierarchy. mf: mossy
fibres; PHG, parahippocampal gyrusand perirhinal cortex; pp, perforant path;
rc, recurrent collaterals of the CA3 hippocampal pyramidal cells; S, superficial
pyramidal cells; 2, pyramidal cellsin layer 2 of the entorhinal cortex; 3, pyra-
midal cellsin layer 3 of the entorhinal cortex; 5, 6, pyramidal cellsin the deep
layers of the entorhinal cortex. Thethick lines above the cell bodies represent
thedendrites.
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remembered material [19], may be characteristic of the deficits.

One way of relating the impairment of spatial processing to other aspects of hip-
pocampal function (including the memory of recent events or episodes in humans)
isto note that this spatial processing involves a snapshot type of memory, in which
one whole scene with its often unique set of parts or elements must be remembered.
This memory may then be a special case of episodic memory, which involves an
arbitrary association of a set of spatial and/or non-spatial events that describe a past
episode. For example, the deficit in paired associate learning in humans (see [100])
may be especially evident when this involves arbitrary associations between words,
for example, window — lake.

It appears that the deficits in ‘recognition’ memory (tested for example for visual
stimuli seen recently in a delayed match to sample task) produced by damage to
this brain region are related to damage to the perirhinal cortex [122, 123], which
receives from high order association cortex and has connections to the hippocampus
(see Figure 16.1) [107, 108]. The functions of the perirhinal cortex in memory are
discussed by [82].

16.2.2

Neurophysiology of the hippocampus and connected areas

Intherat, many hippocampal pyramidal cellsfirewhentherat isin aparticular place,
as defined for example by the visual spatial cues in an environment such as a room
[39, 53, 54]. Thereisinformation from the responses of many such cells about the
place where the rat is in the environment. When arat enters a new environment B
connected to a known environment A, there is a period in the order of 10 minutesin
which as the new environment is learned, some of the cells that formerly had place
fields in A develop instead place fields in B. It is as if the hippocampus sets up a
new spatial representation which can map both A and B, keeping the proportion of
cells active at any one time approximately constant [118]. Some rat hippocampal
neurons are found to be more task-related, responding for example to olfactory stim-
uli to which particular behavioural responses must be made [19], and some of these
neurons may in different experiments show place-related responses.

It was recently discovered that in the primate hippocampus, many spatial cells have
responses not related to the place where the monkey is, but instead related to the
place where the monkey islooking [78, 79, 85]. These are called * spatial view cells’,
an example of which is shown in Figure 16.2. These cells encode information in
allocentric (world-based, as contrasted with egocentric, body-related) coordinates
[29, 93]. They can in some cases respond to remembered spatial views in that they
respond when the view details are obscured, and use idiothetic (self-motion) cues
including eye position and head direction to trigger this memory recall operation
[71]. Another idiotheticinput that drives some primate hippocampal neuronsislinear
and axial whole body motion [58], and in addition, the primate presubiculum has
been shown to contain head direction cells[72].

Part of the interest of spatial view cells is that they could provide the spatia repre-
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Examples of thefiring of a hippocampal spatial view cell when the monkey was
walking around thelaboratory. a. Thefiring of thecell isindicated by the spots
in the outer set of 4 rectangles, each of which represents one of the walls of
the room. There is one spot on the outer rectangle for each action potential.
The base of the wall is towards the centre of each rectangle. The positions on
the walls fixated during the recording sessions are indicated by points in the
inner set of 4 rectangles, each of which also represents a wall of the room. The
central squareisa plan view of the room, with a triangle printed every 250 ms
to indicate the position of the monkey, thus showing that many different places
were visited during the recording sessions. b. A similar representation of the
same 3 recording sessions as in (&), but modified to indicate some of the range
of monkey positions and horizontal gaze directions when the cell fired at more
than 12 spikes/s. ¢. A similar representation of the same 3 recording sessions
asin (b), but modified to indicate more fully the range of places when the cell
fired. The triangle indicates the current position of the monkey, and the line
projected from it shows which part of the wall is being viewed at any one time
whilethemonkey iswalking. One spot isshown for each action potential. (After
Georges-Francois, Rolls and Robertson, 1999)

sentation required to enable primates to perform object-place memory, for example
remembering where they saw a person or object, which is an example of an episodic
memory, and indeed similar neurons in the hippocampus respond in object-place
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memory tasks [84]. Associating together such a spatial representation with a repre-
sentation of a person or object could be implemented by an autoassociation network
implemented by the recurrent collateral connections of the CA3 hippocampal pyra-
midal cells [75, 76, 92]. Some other primate hippocampal neurons respond in the
object-place memory task to a combination of spatial information and information
about the object seen [84]. Further evidence for this convergence of spatial and object
information in the hippocampus is that in another memory task for which the hip-
pocampus is needed, learning where to make spatial responses conditional on which
picture is shown, some primate hippocampal neurons respond to a combination of
which picture is shown, and where the response must be made [13, 48].

These primate spatial view cells are thus unlike place cells found in the rat [39, 51,
53, 54, 118]. Primates, with their highly developed visual and eye movement control
systems, can explore and remember information about what is present at places in
the environment without having to visit those places. Such spatial view cellsin pri-
mates would thus be useful as part of amemory system, in that they would provide a
representation of apart of space that would not depend on exactly where the monkey
or human was, and that could be associated with items that might be present in those
gpatial locations. An example of the utility of such arepresentation in humanswould
be remembering where a particular person had been seen. The primate spatia repre-
sentations would also be useful in remembering trajectories through environments,
of use for example in short-range spatial navigation [58, 79].

The representation of space in the rat hippocampus, which is of the place where the
rat is, may be related to the fact that with a much less developed visual system than
the primate, the rat’s representation of space may be defined more by the olfactory
and tactile as well as distant visual cues present, and may thus tend to reflect the
place where the rat is. An interesting hypothesis on how this difference could arise
from essentially the same computational process in rats and monkeys is as follows
[17, 79]. The starting assumption is that in both the rat and the primate, the dentate
granule cells and the CA3 and CA1 pyramidal cells respond to combinations of the
inputs received. In the case of the primate, a combination of visual features in the
environment will over atypical viewing angle of perhaps 10-20 degreesresult in the
formation of a spatial view cell, the effective trigger for which will thus be a com-
bination of visual features within arelatively small part of space. In contrast, in the
rat, given the very extensive visual field which may extend over 180-270 degrees,
a combination of visual features formed over such a wide visual angle would effec-
tively define a position in space, that is a place. The actua processes by which the
hippocampal formation cells would come to respond to feature combinations could
be similar in rats and monkeys, involving for example competitive learning in the
dentate granule cells, autoassociation learning in CA3 pyramidal cells, and compet-
itive learning in CA1 pyramidal cells [75, 76, 92, 116]. Thus spatial view cellsin
primates and place cells in rats might arise by the same computational process but
be different by virtue of the fact that primates are foveate and view a small part of
the visual field at any one time, wheresas the rat has a very wide visual field. Al-
though the representation of space in rats therefore may be in some ways analogous
to the representation of space in the primate hippocampus, the difference does have
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implications for theories, and modelling, of hippocampal function.

In rats, the presence of place cells has led to theories that the rat hippocampus is a
gpatia cognitive map, and can perform spatial computations to implement naviga-
tion through spatial environments [11, 10, 54, 57]. The details of such navigational
theories could not apply in any direct way to what isfound in the primate hippocam-
pus. Instead, what is applicable to both the primate and rat hippocampal recordings
is that hippocampal neurons contain a representation of space (for the rat, primar-
ily where therat is, and for the primate primarily of positions ‘out there’ in space)
which is a suitable representation for an episodic memory system. In primates, this
would enable one to remember, for example, where an object was seen. In rats, it
might enable memories to be formed of where particular objects (for example those
defined by olfactory, tactile, and taste inputs) were found. Thus at least in primates,
and possibly aso in rats, the neuronal representation of space in the hippocampus
may be appropriate for forming memories of events (which usually in these animals
have a spatial component). Such memories would be useful for spatial navigation,
for which according to the present hypothesis the hippocampus would implement
the memory component but not the spatial computation component. Evidence that
what neuronal recordings have shown is represented in the non-human primate hip-
pocampal system may also be present in humans is that regions of the hippocampal
formation can be activated when humans ook at spatial views[21, 55].

16.2.3

Hippocampal models

These neuropsychological and neurophysiological analyses are complemented by
neuronal network models of how the hippocampus could operate to store and re-
trieve large numbers of memories [73, 75, 76, 92, 115, 116]). One key hypothesis
(adopted aso by [46]) is that the hippocampa CA3 recurrent collateral connections
which spread throughout the CA3 region provide a single autoassociation network
that enables the firing of any set of CA3 neurons representing one part of a memory
to be associated together with the firing of any other set of CA3 neurons representing
another part of the same memory (cf. [44]). The generic architecture of an attractor
network isshown in Figure 16.5. Associatively modifiable synapsesin the recurrent
collateral synapses allow memoriesto be stored, and then later retrieved from only a
part, as described by [4, 33, 32, 82, 92]. The number of patterns p each representing
a different memory that could be stored in the CA3 system operating as an autoas-
sociation network would be as shown in equation 16.1 (see [82, 92], which describe
extensions to the analysis developed by [33]).

CRC

p=
where CRC is the number of synapses on the dendrites of each neuron devoted to
the recurrent collaterals from other CA3 neurons in the network, a is the sparseness
of the representation, and & is a factor that depends weakly on the detailed structure
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The numbers of connections from three different sources onto each CA3 cell
from three different sourcesin therat. (After Treves and Rolls 1992, and Rolls
and Treves 1998.)

of the rate distribution, on the connectivity pattern, etc., but is roughly in the order
of 0.2-0.3. Given that C'RC is approximately 12,000 in the rat, the resulting storage
capacity would be greater than 12,000 memories, and perhaps up to 36,000 memories
if the sparseness a of the representation was as low as 0.02 [115, 116].

Another part of the hypothesisisthat the very sparse (see Figure 16.3) but powerful
connectivity of the mossy fibre inputs to the CA3 cells from the dentate granule cells
isimportant during learning (but not recall) to force anew, arbitrary, set of firing onto
the CA3 cells which dominates the activity of the recurrent collaterals, so enabling a
new memory represented by the firing of the CA3 cellsto be stored [73, 75, 115].
The perforant path input to the CA3 cells, which is numerically much larger but at
the apical end of the dendrites, would be used to initiate recall from an incomplete
pattern [92, 115]. The prediction of the theory about the necessity of the mossy fibre
inputs to the CA3 cells during learning but not recall has now been confirmed [42].
A way to enhance the €fficacy of the mossy fibre system relative to the CA3 recurrent
collateral connections during learning may be to increase the level of acetyl choline
by increasing the firing of the septal cholinergic cells[31].

Another key part of the quantitative theory is that not only can retrieval of a mem-
ory by an incomplete cue be performed by the operation of the associatively modi-
fied CA3 recurrent collateral connections, but also that recall of that information to
the neocortex can be performed via CA1 and the hippocampo-cortical and cortico-
cortical backprojections [76, 81, 92, 116] shown in Figure 16.1. In this case, the
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number of memory patterns pBP that can be retrieved by the backprojection system
is

P~ _ O e (16.2)
aBPIn (=)

where CBP is the number of synapses on the dendrites of each neuron devoted to
backprojections from the preceding stage (dashed lines in Figure 16.1), aB” isthe
sparseness of the representation in the backprojection pathways, and kBP is a factor
that depends weakly on the detailed structure of the rate distribution, on the con-
nectivity pattern, etc., but is roughly in the order of 0.2-0.3. The insight into this
quantitative analysis came from treating each layer of the backprojection hierarchy
as being quantitatively equivalent to another iteration in a single recurrent attractor
network [114, 116]. The need for this number of connections to implement recall,
and more generally constraint satisfaction in connected networks (see [82]), provides
afundamental and quantitative reason for why there are approximately as many back-
projections as forward connections between the adjacent connected cortical areasin
acortical hierarchy. This, and other computational approaches to hippocampal func-
tion, are included in a special issue of the journal Hippocampus (1996), 6(6).
Another aspect of the theory is that the operation of the CA3 system to implement
recall, and of the backprojections to retrieve the information, would be sufficiently
fast, given the fast recall in associative networks built of neurons with continuous
dynamics (see[82)).

16.2.4

Continuous spatial representations, path integration, and the use of id-
iothetic inputs

The fact that spatial patterns, which imply continuous representations of space, are
represented in the hippocampus has led to the application of continuous attractor
models to help understand hippocampal function. Such models have been devel oped
by [8, 95, 101, 102, 104, 105], (see [82]). Indeed, we have shown how a continuous
attractor network could enable the head direction cell firing of presubicular cells to
be maintained in the dark, and updated by idiothetic (self-motion) head rotation cell
inputs [72, 101]. The continuous attractor model has been developed to understand
how place cell firing in rats can be maintained and updated by idiothetic inputsin the
dark [104]. The continuous attractor model has also been developed to understand
how spatia view cell firing in primates can be maintained and updated by idiothetic
eye movement and head direction inputs in the dark [71, 105].

The way in which path integration could be implemented in the hippocampus or
related systems is described next. Single-cell recording studies have shown that
some neurons represent the current position along a continuous physical dimension
or space even when no inputs are available, for example in darkness. Examplesin-
clude neurons that represent the positions of the eyes (i.e., eye direction with respect
to the head), the place where the animal is looking in space, head direction, and the
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place where the animal islocated. In particular, examples of such classes of cellsin-
clude head direction cellsin rats[50, 62, 110, 111] and primates [72], which respond
maximally when the animal’s head is facing in a particular preferred direction; place
cellsinrats[43, 47, 49, 52, 56] that fire maximally when the animal isin a particular
location; and spatial view cells in primates that respond when the monkey is |ook-
ing towards a particular location in space [29, 71, 85]. In the parietal cortex there
are many spatial representations, in several different coordinate frames (see [6] and
[82]), and they have some capability to remain active during memory periods when
the stimulus is no longer present. Even more than this, the dorsolateral prefrontal
cortex networks to which the parietal networks project have the capability to main-
tain spatial representations active for many seconds or minutes during short term
memory tasks, when the stimulus is no longer present (see below).

A class of network that can maintain the firing of its neurons to represent any loca-
tion along a continuous physical dimension such as spatial position, head direction,
etc is a‘Continuous Attractor’ neural network (CANN). It uses excitatory recurrent
collateral connections between the neurons to reflect the distance between the neu-
rons in the state space of the animal (e.g. head direction space). These networks can
maintain the bubble of neural activity constant for long periods wherever it is started
to represent the current state (head direction, position, etc) of the animal, and are
likely to be involved in many aspects of spatial processing and memory, including
spatial vision. Globa inhibition is used to keep the number of neuronsin abubble or
packet of actively firing neurons relatively constant, and to help to ensure that there
isonly one activity packet. Continuous attractor networks can be thought of as very
similar to autoassociation or discrete attractor networks (see [82]), and have the same
architecture, asillustrated in Figure 16.5. The main difference is that the patterns
stored in a CANN are continuous patterns, with each neuron having broadly tuned
firing which decreases with for example a Gaussian function as the distance from
the optimal firing location of the cell is varied, and with different neurons having
tuning that overlaps throughout the space. Such tuning isillustrated in Figure 16.4.
For comparison, autoassociation networks normally have discrete (separate) patterns
(each pattern implemented by the firing of a particular subset of the neurons), with
no continuous distribution of the patterns throughout the space (see Figure 16.4).
A consequent difference is that the CANN can maintain its firing at any location in
the trained continuous space, whereas a discrete attractor or autoassoci ation network
moves its population of active neurons towards one of the previously learned attrac-
tor states, and thus implements the recall of a particular previously learned pattern
from an incomplete or noisy (distorted) version of one of the previously learned pat-
terns. The energy landscape of a discrete attractor network (see [82]) has separate
energy minima, each one of which correspondsto alearned pattern, whereas the en-
ergy landscape of a continuous attractor network is flat, so that the activity packet
remains stable with continuous firing wherever it is started in the state space. (The
state space refersto set of possible spatial states of the animal in itsenvironment, e.g.
the set of possible head directions.) | next describe the operation and properties of
continuous attractor networks, which have been studied by for example [3], [112],
and [120], and then, following [101], address four key issues about the biological
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The types of firing patterns stored in continuous attractor networks are illustrated for
the patterns present on neurons 1-1000 for Memory 1 (when the firing isthat produced
when the spatial state represented is that for location 300), and for Memory 2 (when
the firing is that produced when the spatial state represented is that for location 500).
The continuous nature of the spatial representation results from the fact that each neu-
ron has a Gaussian firing rate that peaks at its optimal location. This particular mixed
network also contains discrete representations that consist of discrete subsets of active
binary firing rate neurons in the range 1001-1500. The firing of these latter neurons
can be thought of as representing the discrete events that occur at the location. Con-
tinuous attractor networks by definition contain only continuous representations, but
this particular network can store mixed continuous and discrete representations, and is
illustrated to show the difference of the firing patterns normally stored in separate con-
tinuous attractor and discrete attractor networks. For this particular mixed network,
during learning, Memory 1 is stored in the synaptic weights, then Memory 2, etc, and
each memory contains part that is continuously distributed to represent physical space,
and part that represents a discrete event or object.

application of continuous attractor network models.

One key issue in such continuous attractor neural networks is how the synaptic
strengths between the neurons in the continuous attractor network could be learned
in biological systems (Section 16.2.4.2).

A second key issue in such Continuous Attractor neural networks is how the bubble
of neuronal firing representing one location in the continuous state space should be
updated based on non-visual cues to represent a new location in state space. This
is essentialy the problem of path integration: how a system that represents a mem-
ory of where the agent is in physical space could be updated based on idiothetic
(self-motion) cues such as vestibular cues (which might represent a head velocity
signal), or proprioceptive cues (which might update a representation of place based
on movements being made in the space, during for example walking in the dark).
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A third key issue is how stability in the bubble of activity representing the current
location can be maintained without much drift in darkness, when it is operating as a
memory system (see [82] and [101]).

A fourth key issue is considered below in which | describe networks that store both
continuous patterns and discrete patterns (see Figure 16.4), which can be used to
store for example the location in (continuous, physical) space where an object (a
discreteitem) is present.

The generic model of a continuous attractor network

The generic model of a continuous attractor is as follows. (The model is described
in the context of head direction cells, which represent the head direction of rats [50,
110] and macaques [72], and can be reset by visual inputs after gradua drift in
darkness.) The model is a recurrent attractor network with globa inhibition. It is
different from aHopfield attractor network [33] primarily in that there are no discrete
attractors formed by associative learning of discrete patterns. Instead thereis a set of
neurons that are connected to each other by synaptic weights w;; that are a simple
function, for example Gaussian, of the distance between the states of the agent in
the physical world (e.g., head directions) represented by the neurons. Neurons that
represent similar states (locationsin the state space) of the agent in the physical world
have strong synaptic connections, which can be set up by an associative learning rule,
asdescribed in Section 16.2.4.2. The network updatesitsfiring rates by thefollowing
‘leaky-integrator’ dynamical equations. The continuously changing activation h!P
of each head direction cell i is governed by the Equation

b0

CHD
J

dhi® (1)

= —pHD (%

(wij — wmh)erD(t) +1Y, (16.3)

where r?D is the firing rate of head direction cell j, w;; isthe excitatory (positive)
synaptic weight from head direction cell j to cell i, w'™ isaglobal constant describ-
ing the effect of inhibitory interneurons, and 7 is the time constant of the system?.
The term —hHP (¢) indicates the amount by which the activation decays (in the leaky
integrator neuron) at time ¢. (The network is updated in atypical simulation at much
smaller timesteps than the time constant of the system, 7.) The next term in Equation
(16.3) is the input from other neurons in the network T]HD weighted by the recurrent
collateral synaptic connections w;; (scaled by a constant ¢, and CHP which is the
number of synaptic connections received by each head direction cell from other head
direction cellsin the continuous attractor). The term I} represents a visual input to
head direction cell i. Each term 1)V is set to have a Gaussian response profile in most
continuous attractor networks, and this sets the firing of the cells in the continuous

INotethat here | user rather than y to refer to the firing rates of the neurons in the network, remembering
that, because thisis arecurrently connected network (see Figure 16.5), the output from aneuron y; might
be the input 2 ; to another neuron.
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Figure 16.5
Thearchitecture of an attractor neural network.

attractor to have Gaussian response profiles as a function of where the agent is lo-
cated in the state space (see e.g., Figure 16.4), but the Gaussian assumption is not
crucia. (It isknown that the firing rates of head direction cellsin both rats[50, 110]
and macagues [72] is approximately Gaussian.) When the agent is operating without
visual input, in memory mode, then the term I} is set to zero. Thefiring rate r!1P of
cell 7 is determined from the activation A!P and the sigmoid function

1
HD _
r’i (t) - 1 + 6725(’1?13@)7(1)’ (164)

where o and /3 are the sigmoid threshold and slope, respectively.

16.2.4.2 Learning the synaptic strengths between the neurons that implement a contin-
uous attractor network

So far we have said that the neurons in the continuous attractor network are con-
nected to each other by synaptic weights w;; that are asimple function, for example
Gaussian, of the distance between the states of the agent in the physical world (e.g.
head directions, spatial views etc) represented by the neurons. In many simulations,
the weights are set by formula to have weights with these appropriate Gaussian val-
ues. However, [101] showed how the appropriate weights could be set up by learning.
They started with the fact that since the neurons have broad tuning that may be Gaus-
sian in shape, nearby neurons in the state space will have overlapping spatial fields,
and will thus be co-active to a degree that depends on the distance between them.
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They postulated that therefore the synaptic weights could be set up by associative
learning based on the co-activity of the neurons produced by external stimuli asthe
animal moved in the state space. For example, head direction cells are forced to fire
during learning by visual cues in the environment that produce Gaussian firing as a
function of head direction from an optimal head direction for each cell. Thelearning
rule is simply that the weights w;; from head direction cell j with firing rate r}'®
to head direction cell i with firing rate r' are updated according to an associative
(Hebhb) rule

dw;j = krJID r;{D (16.5)

where dw;; is the change of synaptic weight and & is the learning rate constant.
During the learning phase, the firing rate v of each head direction cell i might be
the following Gaussian function of the displacement of the head from the optimal
firing direction of the cell

D — o= sin/20%m (16.6)

where syp is the difference between the actual head direction x (in degrees) of the
agent and the optimal head direction x; for head direction cell 7, and oyp is the
standard deviation.

[101] showed that after training at all head directions, the synaptic connections de-
velop strengths that are an ailmost Gaussian function of the distance between the
cellsin head direction space, as shown in Figure 16.6 (left). Interestingly if a non-
linearity is introduced into the learning rule that mimics the properties of NMDA
receptors by allowing the synapses to modify only after strong postsynaptic firing
is present, then the synaptic strengths are still close to a Gaussian function of the
distance between the connected cellsin head direction space (see Figure 16.6, left).
They showed that after training, the continuous attractor network can support stable
activity packets in the absence of visual inputs (see Figure 16.6, right) provided
that global inhibition is used to prevent all the neurons becoming activated. (The
exact stability conditions for such networks have been analyzed by [3]). Thus[101]
demonstrated biologically plausible mechanisms for training the synaptic weightsin
a continuous attractor using a biologically plausible local learning rule.

So far, we have considered how spatial representations could be stored in continuous
attractor networks, and how the activity can be maintained at any location in the
state space in a form of short term memory when the external (e.g. visual) input
is removed. However, many networks with spatial representations in the brain can
be updated by internal, self-motion (i.e. idiothetic), cues even when there is no
external (e.g. visual) input. Examples are head direction cellsin the presubiculum of
rats and macagues, place cellsin the rat hippocampus, and spatial view cellsin the
primate hippocampus (see Section 16.2). The major question arises about how such
idiothetic inputs could drive the activity packet in a continuous attractor network,
and in particular, how such a system could be set up biologically by self-organizing
learning.

One approach to simulating the movement of an activity packet produced by id-
iothetic cues (which is a form of path integration whereby the current location is
calculated from recent movements) is to employ a look-up table that stores (taking
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Figure 16.6

Training the weights in a continuous attractor network with an associative rule (equa-
tion 16.5). Left: The trained recurrent synaptic weights from head direction cell 50 to
the other head direction cells in the network arranged in head direction space (solid
curve). The dashed line shows a Gaussian curve fitted to the weights shown in the solid
curve. The dash-dot curve showstherecurrent synaptic weightstrained with rule equa-
tion (16.5), but with a non-linearity introduced that mimics the properties of NMDA
receptors by allowing the synapses to modify only after strong postsynaptic firing is
present. Right: The stable firing rate profiles forming an activity packet in the con-
tinuous attractor network during the testing phase when the training (visual) inputsare
no longer present. Thefiring rates are shown after the network has been initially stimu-
lated by visual input toinitialize an activity packet, and then allowed to settleto a stable
activity profilewithout visual input. Thethreegraphsshow thefiringratesfor low, inter-
mediateand high values of thelateral inhibition parameter w*™". For both left and right
plots, the 100 head direction cells are arranged according to where they fire maximally
in the head direction space of the agent when visual cues are available. After Stringer,
Trappenberg, Rollsand de Araujo (2002).

head direction cells as an example), for every possible head direction and head rota-
tional velocity input generated by the vestibular system, the corresponding new head
direction [95]. Another approach involves modulating the strengths of the recurrent
synaptic weights in the continuous attractor on one but not the other side of a cur-
rently represented position, so that the stable position of the packet of activity, which
requires symmetric connections in different directions from each node, is lost, and
the packet moves in the direction of the temporarily increased weights, although no
possible biological implementation was proposed of how the appropriate dynamic
synaptic weight changes might be achieved [120]. Another mechanism (for head
direction cells) [97] relies on a set of cells, termed (head) rotation cells, which are
co-activated by head direction cells and vestibular cells and drive the activity of the
attractor network by anatomically distinct connections for clockwise and counter-
clockwiserotation cells, in what is effectively alook-up table. However, no proposal
was made about how this could be achieved by abiologically plausible learning pro-
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cess, and this has been the case until recently for most approachesto path integration
in continuous attractor networks, which rely heavily on rather artificial pre-set synap-
tic connectivities.

[101] introduced a proposal with more biological plausibility about how the synaptic
connections from idiothetic inputs to a continuous attractor network can be learned
by a self-organizing learning process. The essence of the hypothesis is described
with Figure 16.7. The continuous attractor synaptic weights wR€ are set up under
the influence of the external visual inputs IV as described in Section 16.2.4.2. At
the same time, the idiothetic synaptic weights w'P (in which the 1D refersto the fact
that they are in this case produced by idiothetic inputs, produced by cells that fire to
represent the velocity of clockwise and anticlockwise head rotation), are set up by
associating the change of head direction cell firing that has just occurred (detected
by atrace memory mechanism described below) with the current firing of the head
rotation cells 'P. For example, when the trace memory mechanism incorporated
into the idiothetic synapses w'P detects that the head direction cell firing is at a
given location (indicated by the firing ) and is moving clockwise (produced by
the atering visual inputs IV), and there is simultaneous clockwise head rotation
cell firing, the synapses w'® learn the association, so that when that rotation cell
firing occurs later without visual input, it takes the current head direction firing in
the continuous attractor into account, and moves the location of the head direction
attractor in the appropriate direction.

For the learning to operate, the idiothetic synapses onto head direction cell ¢ with
firing 72 need two inputs: the memory traced term from other head direction cells
7P (given by

TP (£ + 6t) = (1 — n)rHP(t + 6t) 4+ n7P (1) (16.7)

where 7 is a parameter set in the interval [0,1] which determines the contribution of
the current firing and the previous trace), and the head rotation cell input with firing
7IP; and the learning rule can be written

5D, = D FHD D (16.8)
where k is the learning rate associated with this type of synaptic connection. The
head rotation cell firing (r°) could be as simple as one set of cells that fire for
clockwise head rotation (for which & might be 1), and a second set of cells that fire
for anticlockwise head rotation (for which & might be 2).

After learning, the firing of the head direction cells would be updated in the dark
(when I} = 0) by idiothetic head rotation cell firing r!P as follows

¢(]

CHD
J

1
J.k

HD
_dhP(t)

— _pHD;
- (1) +

(wi; — w™)riP(t) + 1)
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General network architecturefor aone-dimensional continuousattractor model
of head direction cells which can be updated by idiothetic inputs produced by
head rotation cell firing ~. Thehead direction cell firingis~H®, the continuous
attractor synaptic weightsare w®¢, theidiothetic synaptic weightsare w'”, and
the external visual input isIV.

Equation 16.9 is similar to equation 16.3, except for the last term, which introduces
the effects of the idiothetic synaptic weights w;j;., which effectively specify that the
current firing of head direction cell 4, 7P, must be updated by the previously learned
combination of the particular head rotation now occurring indicated by 1P, and the
current head direction indicated by the firings of the other head direction cells r?D
indexed through ;2. This makes it clear that the idiothetic synapses operate using
combinations of inputs, in this case of two inputs. Neurons that sum the effects
of such local products are termed Sigma-Pi neurons. Although such synapses are
more complicated than the two-term synapses used throughout the rest of this book,
such three-term synapses appear to be useful to solve the computational problem of
updating representations based on idiothetic inputs in the way described. Synapses
that operate according to Sigma-Pi rules might be implemented in the brain by a
number of mechanisms described by [38] (Section 21.1.1), [36], and [101], including

2The term ¢1 /CHPXIP s a scaling factor that reflects the number CHPX!D of inputs to these synapses,
and enables the overall magnitude of the idiothetic input to each head direction cell to remain approxi-
mately the same as the number of idiothetic connections received by each head direction cell is varied.



16.2.4.3

The Operation of Memory Systemsin the Brain 515

having two inputs close together on athin dendrite, so that local synaptic interactions
would be emphasized.

Simulations demonstrating the operation of this self-organizing learning to produce
movement of the location being represented in a continuous attractor network were
described by [101], and one example of the operation is shown in Figure 16.2.4.2.
They aso showed that, after training with just one value of the head rotation cell
firing, the network showed the desirable property of moving the head direction be-
ing represented in the continuous attractor by an amount that was proportional to the
value of the head rotation cell firing. [101] also describe arelated model of theidio-
thetic cell update of the location represented in a continuous attractor, in which the
rotation cell firing directly modulates in a multiplicative way the strength of the re-
current connections in the continuous attractor in such away that clockwise rotation
cells modulate the strength of the synaptic connections in the clockwise direction in
the continuous attractor, and vice versa. It should be emphasized that although
the cells are organized in Figure 16.2.4.2 according to the spatial position being
represented, there is no need for cells in continuous attractors that represent nearby
locations in the state space to be close together, as the distance in the state space
between any two neurons is represented by the strength of the connection between
them, not by where the neurons are physicaly located. This enables continuous
attractor networks to represent spaces with arbitrary topologies, as the topology is
represented in the connection strengths [101, 102, 104, 105]. Indeed, it is this that
enables many different charts each with its own topology to be representedinasingle
continuous attractor network [8].

Continuous attractor networks in two or more dimensions

Some types of spatial representation used by the brain are of spacesthat exist in two
or more dimensions. Examples are the two- (or three-) dimensional space represent-
ing where oneislooking at in aspatial scene. Another isthe two- (or three-) dimen-
siona space representing where one is located. It is possible to extend continuous
attractor networks to operate in higher dimensional spaces than the one-dimensional
spaces considered so far [112, 104]. Indeed, it isalso possible to extend the analyses
of how idiothetic inputs could be used to update two-dimensional state spaces, such
as the locations represented by place cells in rats [104] and the location at which
one is looking represented by primate spatial view cells [105, 102]. Interestingly,
the number of terms in the synapses implementing idiothetic update do not need to
increase beyond three (asin Sigma-Pi synapses) even when higher dimensional state
spaces are being considered [104]. Also interestingly, a continuous attractor net-
work can in fact represent the properties of very high dimensional spaces, because
the properties of the spaces are captured by the connections between the neurons
of the continuous attractor, and these connections are of course, as in the world of
discrete attractor networks, capable of representing high dimensional spaces [104].
With these approaches, continuous attractor networks have been developed of the
two-dimensional representation of rat hippocampal place cellswith idiothetic update
by movements in the environment [104], and of primate hippocampal spatial view
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Idiothetic update of the location represented in a continuous attractor network.
Thefiring rate of the cells with optima at different head directions (organized
according to head direction on the ordinate) is shown by the blackness of the
plot, as a function of time. The activity packet was initialized to a head direc-
tion of 75 degrees, and the packet was allowed to settle without visual input. For
t = 0tot = 100 therewas no rotation cell input, and the activity packet in the
continuous attractor remained stable at 75 degrees. For t = 100 to ¢t = 300 the
clockwiserotation cellswere activewith afiring rate of 0.15to represent a mod-
erate angular velocity, and the activity packet moved clockwise. For ¢t = 300 to
t = 400 there was no rotation cell firing, and the activity packet immediately
stopped, and remained still. For ¢ = 400 to ¢ = 500 the anti-clockwise rotation
cells had a high firing rate of 0.3 to represent a high velocity, and the activity
packet moved anti-clockwise with a greater velocity. For ¢ = 500 to ¢ = 600
therewas no rotation cell firing, and the activity packet immediately stopped.

cells with idiothetic update by eye and head movements [102, 105].

16.2.5 A unified theory of hippocampal memory: mixed continuous and dis-
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crete attractor networks

If the hippocampus is to store and retrieve episodic memories, it may need to asso-
ciate together patterns which have continuous spatia attributes, and other patterns
which represent objects, which are discrete. To address this issue, we have now
shown that attractor networks can store both continuous patterns and discrete pat-
terns, and can thus be used to store for example the location in (continuous, physi-
cal) space where an object (adiscrete item) is present (see Figure 16.4 and [88]). In
this network, when events are stored that have both discrete (object) and continuous
(spatial) aspects, then the whole place can be retrieved later by the object, and the
object can be retrieved by using the place as aretrieval cue. Such networks are likely
to be present in parts of the brain that receive and combine inputs both from systems
that contain representations of continuous (physical) space, and from brain systems
that contain representations of discrete objects, such as the inferior temporal visual
cortex. One such brain system is the hippocampus, which appears to combine and
store such representationsin amixed attractor network in the CA3 region, which thus
is able to implement episodic memories which typically have a spatial component,
for example where an item such as a key islocated.

This network thus shows that in brain regions where the spatial and object processing
streams are brought together, then a single network can represent and learn associa-
tions between both types of input. Indeed, in brain regions such as the hippocampal
system, it is essentia that the spatial and object processing streams are brought to-
gether in a single network, for it is only when both types of information are in the
same network that spatial information can be retrieved from object information, and
vice versa, which is a fundamental property of episodic memory. It may also be
the case that in the prefrontal cortex, attractor networks can store both spatial and
discrete (e.g. object-based) types of information in short term memory (see below).

16.2.6

The speed of operation of memory networks: the integrate-and-fire ap-
proach

Consider for example areal network whose operation has been described by an au-
toassociative formal model that acquires, with learning, a given attractor structure.
How does the state of the network approach, in real time during aretrieval operation,
one of those attractors? How long does it take? How does the amount of informa-
tion that can be read off the network’s activity evolve with time? Also, which of the
potential steady statesis indeed a stable state that can be reached asymptotically by
the net? How isthe stability of different states modulated by external agents? These
are examples of dynamical properties, which to be studied require the use of models
endowed with some dynamics. An appropriate such model is one which incorporates
integrate-and-fire neurons.

The concept that attractor (autoassociation) networks can operate very rapidly if im-
plemented with neurons that operate dynamically in continuous time is described by
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[82] and [92]. The result described was that the principal factor affecting the speed
of retrieval is the time constant of the synapses between the neurons that form the
attractor ([7, 59, 92, 113]). This was shown analytically by [113], and described by
[92] Appendix 5. If the (inactivation) time constant of AMPA synapses is taken as
10 ms, then the settling time for a single attractor network is approximately 15-17
ms[7, 59, 92]. A connected series of four such networks (representing for example
four connected cortical areas) each involving recurrent (feedback) processing imple-
mented by the recurrent collateral synaptic connections, takes approximately 4 x 17
ms to propagate from start to finish, retrieving information from each layer as the
propagation proceeds [82, 59]. This speed of operation is sufficiently rapid that such
attractor networks are biologically plausible [82, 92].

The way in which networks with continuous dynamics (such as networks made of
real neurons in the brain, and networks modelled with integrate-and-fire neurons)
can be conceptualized as settling so fast into their attractor states is that spontaneous
activity in the network ensures that some neurons are close to their firing threshold
when the retrieval cue is presented, so that the firing of these neurons is influenced
within 1-2 ms by the retrieval cue. These neurons then influence other neurons
within milliseconds (given the point that some other neurons will be close to thresh-
old) through the modified recurrent collateral synapses that store the information.
In this way, the neurons in networks with continuous dynamics can influence each
other within afraction of the synaptic time constant, and retrieval can be very rapid
[92, 82].

16.3 Short term memory systems

16.3.1 Prefrontal cortex short term memory networks, and their relation to tem-
poral and parietal perceptual networks

A common way that the brain usesto implement a short term memory is to maintain
the firing of neurons during a short memory period after the end of a stimulus (see
[24] and [92]). Intheinferior temporal cortex thisfiring may be maintained for afew
hundred ms even when the monkey is not performing amemory task [18, 89, 90, 91].
In more ventral temporal cortical areas such as the entorhina cortex the firing may
be maintained for longer periods in delayed match to sample tasks [109], and in the
prefrontal cortex for even tens of seconds [23, 24]. In the dorsolateral and inferior
convexity prefrontal cortex the firing of the neurons may be related to the memory
of spatial responses or objects [30, 119] or both [63], and in the principal sulcus /
arcuate sulcus region to the memory of places for eye movements [22] (see [82]).
The firing may be maintained by the operation of associatively modified recurrent
collateral connections between nearby pyramidal cells producing attractor states in
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autoassoci ative networks (see [82]).

For the short term memory to be maintained during periods in which new stimuli
are to be perceived, there must be separate networks for the perceptual and short
term memory functions, and indeed two coupled networks, one in the inferior tem-
poral visual cortex for perceptual functions, and ancther in the prefrontal cortex for
maintaining the short term memory during intervening stimuli, provide a precise
model of the interaction of perceptual and short term memory systems[67, 70] (see
Figure 16.9). In particular, this model shows how a prefrontal cortex attractor (au-
toassociation) network could be triggered by a sample visual stimulus represented
in the inferior temporal visual cortex in a delayed match to sample task, and could
keep this attractor active during a memory interval in which intervening stimuli are
shown. Then when the sample stimulus reappears in the task as a match stimulus,
the inferior temporal cortex module showed a large response to the match stimu-
lus, because it is activated both by the visual incoming match stimulus, and by the
consistent backprojected memory of the sample stimulus still being represented in
the prefrontal cortex memory module (see Figure 16.9). This computational model
makes it clear that in order for ongoing perception to occur unhindered implemented
by posterior cortex (parietal and temporal lobe) networks, there must be a separate
set of modules that is capable of maintaining a representation over intervening stim-
uli. Thisisthe fundamental understanding offered for the evolution and functions of
the dorsolateral prefrontal cortex, and it is this ability to provide multiple separate
short term attractor memories that provides we suggest the basis for its functions in
planning. [67] and [70] performed analyses and simulations which showed that for
working memory to beimplemented in thisway, the connections between the percep-
tual and the short term memory modules (see Figure 16.9) must be relatively weak.
As a starting point, they used the neurophysiological data showing that in delayed
match to sample tasks with intervening stimuli, the neuronal activity in the inferior
temporal visual cortex (1T) isdriven by each new incoming visual stimulus [64, 66],
whereas in the prefrontal cortex, neurons start to fire when the sample stimulus is
shown, and continue the firing that represents the sample stimulus even when the
potential match stimuli are being shown [65]. The architecture studied by [70] was
as shown in Figure 16.9, with both the intramodular (recurrent collateral) and the
intermodular (forward IT to PF, and backward PF to IT) connections trained on the
set of patterns with an associative synaptic modification rule. A crucia parameter is
the strength of the intermodular connections, g, which indicates the relative strength
of the intermodular to the intramodular connections. This parameter measures ef-
fectively the relative strengths of the currents injected into the neurons by the inter-
modular relative to the intra-modular connections, and the importance of setting this
parameter to relatively weak values for useful interactions between coupled attractor
networks was highlighted by [68] and [69] (see [82]). The patterns themselves were
sets of random numbers, and the simulation utilized a dynamical approach with neu-
rons with continuous (hyperbolic tangent) activation functions (see Section 16.3.2
and [5, 40, 41, 96]). The external current injected into IT by the incoming visual
stimuli was sufficiently strong to trigger the IT module into a state representing the
incoming stimulus. When the sample was shown, the initially silent PF module was
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A short term memory autoassociation network in the prefrontal cortex could
hold active a working memory representation by maintaining its firing in
an attractor state. The prefrontal module would be loaded with the to-be-
remembered stimulus by the posterior module (in thetemporal or parietal cor-
tex) in which the incoming stimuli are represented. Backprojections from the
prefrontal short term memory moduletothe posterior modulewould enablethe
wor king memory to be unloaded, to for example influence on-going perception
(seetext). RC - recurrent collateral connections.

triggered into activity by the weak (¢ > 0.002) intermodular connections. The PF
module remained firing to the sample stimulus even when I T was responding to po-
tential match stimuli later in the trial, provided that g was less than 0.024, because
then the intramodular recurrent connections could dominate the firing (see Figure
16.10). If g was higher than this, then the PF module was pushed out of the at-
tractor state produced by the sample stimulus. The IT module responded to each
incoming potentially matching stimulus provided that g was not greater than approx-
imately 0.024. Moreover, thisvalue of g was sufficiently large that alarger response
of the IT module was found when the stimulus matched the sample stimulus (the
match enhancement effect found neurophysiologically, and a mechanism by which
the matching stimulus can be identified). This simple model thus shows that the op-
eration of the prefrontal cortex in short term memory tasks such as delayed match
to sample with intervening stimuli, and its relation to posterior perceptual networks,
can be understood by the interaction of two weakly coupled attractor networks, as
shown in Figs. 16.9 and 16.10.

The same network can a so be used to illustrate the interaction between the prefrontal
cortex short term memory system and the posterior (IT or PP) perceptual regionsin
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Interaction between the prefrontal cortex (PF) and the inferior temporal cortex (IT) in
adelayed match to sampletask with intervening stimuli with the architectureillustrated
in Figure 16.9. Above: activity in the IT attractor module. Below: activity in the PF
attractor module. Thethick lines show thefiring rates of the set of neuronswith activity
selective for the Sample stimulus (which is also shown as the Match stimulus, and is
labelled A), and the thin lines the activity of the neurons with activity selective for the
Non-Match stimulus, which is shown as an intervening stimulus between the Sample
and Match stimulus and is labelled B. A trial isillustrated in which A is the Sample
(and Match) stimulus. The prefrontal cortex module is pushed into an attractor state
for the sample stimulus by the IT activity induced by the sample stimulus. Because of
the weak coupling to the PF module from the IT module, the PF moduleremainsin this
Sample-related attractor state during the delay periods, and even while the IT module
is responding to the non-match stimulus. The PF module remainsin its Sample-related
state even during the Non-M atch stimulus because once amoduleisin an attractor state,
itisrelatively stable. When the Sample stimulusreappear sasthe Match stimulus, the PF
module shows higher Sample stimulus-related firing, because the incoming input from
IT isnow adding to the activity in the PF attractor network. Thisin turn also produces
a match enhancement effect in the IT neurons with Sample stimulus-related selectivity,
because the backprojected activity from the PF module matchestheincoming activity to
the IT module. After Renart, Parga and Rolls, 2000 and Renart, Moreno, de la Rocha,
Parga and Rolls, 2001.

visual search tasks, asillustrated in Figure 16.11.
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I nteraction between the prefrontal cortex (PF) and theinferior temporal cortex
(IT) in a visual search task with the architecture illustrated in Figure 16.9.
Above: activity in theIT attractor module. Below: activity in the PF attractor
module. The thick lines show thefiring rates of the set of neurons with activity
selectivefor search stimulus A, and thethin linesthe activity of the neuronswith
activity selectivefor stimulusB. During the cueperiod either A or B isshown, to
indicate to the monkey which stimulus to select when an array containing both
A and B isshown after adelay period. Thetrial shown isfor the casewhen A is
the cuestimulus. When stimulusA isshown asa cue, then viathel T module, the
PF moduleis pushed into an attractor state A, and the PF module remembers
this state during the delay period. When the array A + B is shown later, there
is more activity in the PF module for the neurons selective for A, because they
have inputs both from the continuing attractor state held in the PF module and
from the forward activity from the IT module which now contains both A and
B. This PF firing to A in turn also produces greater firing of the population
of IT neurons selective for A than in the IT neurons selective for B, because
the IT neurons selective for A are receiving both A—related visual inputs, and
A-related backprojected inputs from the PF module. After Renart, Parga and
Rolls, 2000 and Renart, Moreno, dela Rocha, Parga and Rolls, 2001.

16.3.2

Computational details of the model of short term memory

The model network of [67] and [70] consists of alarge number of (excitatory) neu-
rons arranged in two modules with the architecture shown in Figure 16.9. Following
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[5, 40], each neuron is assumed to be a dynamical element which transforms an
incoming afferent current into an output spike rate according to a given transduc-
tion function. A given afferent current I,,; toneuron (i = 1,..., N) in module a
(a = IT, PF) decays with a characteristic time constant 7 but increases proportion-
ally to the spike rates of the rest of the neurons in the network (both from inside and
outside its module) connected to it, the contribution of each presynaptic neuron, e.g.
neuron j from module b, and in proportion to the synaptic efficacy ijb between the
two3. This can be expressed through the following equation

dlait) (ab),, (o)
T Z T v + b (16.10)

An external current h(e’“) from outside the network, representing the stimuli, can also
be imposed on every neuron. Selective stimuli are modelled as proportiona to the
stored patterns, i.e. h.* = h,n!;, where h,, isthe intensity of the external current
to module a.

The transduction function of the neurons transforming currentsinto rates was chosen
as a threshold hyperbolic tangent of gain G and threshold 6. Thus, when the current
isvery large the firing rates saturate to an arbitrary value of 1.

The synaptic effi caci es between the neurons of each modul e and between the neurons
in different modules are respectively

P
a,a J . .
ij”zmﬂn;—ﬂ (;—f) i#j; a=IT,PF (1611)
pu=1
Jib) = zpj Vi, b 16.12
i (i — ) (mp; — f) i.j; a#Fb. (1612

Theintra-modular connections are such that anumber P of sparse independent con-
figurations of neural activity are dynamically stable, constituting the possible sus-
tained activity states in each module. Thisis expressed by saying that each module
has learned P binary patterns {n!, = 0,1, u = 1,..., P}, each of them signalling
which neurons are active in each of the sustained activity configurations. Each vari-
able n!;, is alowed to take the values 1 and 0 with probabilities f and (1 — f)
respectively, independently across neurons and across patterns. The inter-modular
connections reflect the temporal associations between the sustained activity states of
each module. In thisway, every stored pattern p in the IT module has an associated
pattern in the PF module which is labelled by the same index. The normalization
constant Ny = N(Jy + g) was chosen so that the sum of the magnitudes of the
inter- and the intraamodular connections remains constant and equal to 1 while their

30n this occasion we revert to the theoretical physicists usual notation for synaptic weights or couplings,
Jij y from Wij.
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relative values are varied. When this constraint is imposed the strength of the con-
nections can be expressed in terms of a single independent parameter g measuring
the relative intensity of the inter- vs. the intraamodular connections (J, can be set
equal to 1 everywhere).

Both modules implicitly include an inhibitory population of neurons receiving and
sending signals to the excitatory neurons through uniform synapses. In this case the
inhibitory population can be treated as a single inhibitory neuron with an activity
dependent only on the mean activity of the excitatory population. We chose the
transduction function of the inhibitory neuron to be linear with slope .

Since the number of neurons in a typical network one may be interested in is very
large, eg. ~ 105 — 109, the analytical treatment of the set of coupled differential
equations (16.10) becomes untractable. On the other hand, when the number of neu-
rons is large, a reliable description of the asymptotic solutions of these equations
can be found using the techniques of statistical mechanics [40]. In this framework,
instead of characterizing the states of the system by the state of every neuron, this
characterization is performed in terms of macroscopic quantities called order pa-
rameters which measure and quantify some global properties of the network as a
whole. The relevant order parameters appearing in the description of the system are
the overlap of the state of each module with each of the stored patterns m/ and the
average activity of each module z,, defined respectively as:

1 1
my =y 20— e B w5 <Y v >y, (1613)

where the symbol < ... >, stands for an average over the stored patterns.

Using the free energy per neuron of the system at zero temperature F (which is not
written explicitly to reduce the technicalities to a minimum), [70] and [67] modelled
the experiments by giving the order parameters the following dynamics:

oml  O0F 0z, oF

-9 — . 16.14
"ot om? ot Oz, (16:14)

These dynamics ensure that the stationary solutions, corresponding to the values of
the order parameters at the attractors, correspond also to minima of the free energy,
and that, as the system evolves, the free energy is always minimized through its gra-
dient. The time constant of the macroscopical dynamics was chosen to be equal
to the time constant of the individual neurons, which reflects the assumption that
neurons operate in parallel. Equations (16.14) were solved by a simple discretizing
procedure (first order Runge-Kutta method). An appropriate value for the time in-
terval corresponding to one computer iteration was found to be /10 and the time
constant has been given the value 7 = 10 ms.

Since not all neurons in the network receive the same inputs, not all of them be-
have in the same way, i.e. have the same firing rates. In fact, the neurons in each
of the modules can be split into different sub-populations according to their state of
activity in each of the stored patterns. The mean firing rate of the neurons in each
sub-population depends on the particular state realized by the network (characterized
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by the values of the order parameters). Associated with each pattern there are two
large sub-populations denoted as foreground (all active neurons) and background (all
inactive neurons) for that pattern. The overlap with a given pattern can be expressed
as the difference between the mean firing rate of the neurons in its foreground and
its background. The average was calculated over all other sub-populations to which
each neuron in the foreground (background) belonged to, where the probability of a
given sub-population is equal to the fraction of neurons in the module belonging to
it (determined by the probability distribution of the stored patterns as given above).
This partition of the neurons into sub-populations is appealing since, in neurophysi-
ological experiments, cellsare usually classified in terms of their response properties
to aset of fixed stimuli, i.e. whether each stimulus s effective or ineffective in driv-
ing their response.

The modelling of the different experiments proceeded according to the macroscopic
dynamics (16.14), where each stimulus wasimplemented as an extracurrent into free
energy for adesired period of time.

Using this model, results of the type described in Section 16.3.1 werefound [67, 70].
The paper by [67] extended the earlier findings of [70] to integrate-and-fire neurons,
and it is results from the integrate-and-fire simulations that are shown in Figs. 16.10
and 16.11.

16.3.3

Computational necessity for a separate, prefrontal cortex, short term
memory system

This approach emphasizes that in order to provide a good brain lesion test of pre-
frontal cortex short term memory functions, the task set should require a short term
memory for stimuli over an interval in which other stimuli are being processed, be-
cause otherwise the posterior cortex perceptual modules could implement the short
term memory function by their own recurrent collateral connections. This approach
also emphasizes that there are many at least partially independent modules for short
term memory functionsin the prefrontal cortex (e.g. several modulesfor delayed sac-
cades; one or more for delayed spatial (body) responsesin the dorsolateral prefrontal
cortex; one or more for remembering visua stimuli in the more ventral prefrontal
cortex; and at least one in the | eft prefrontal cortex used for remembering the words
produced in averbal fluency task — see Section 10.3 of [92]).

This computational approach thus provides a clear understanding of why a separate
(prefrontal) mechanism is needed for working memory functions, as elaborated in
Section 16.3.1. It may also be commented that if a prefrontal cortex module is to
control behaviour in a working memory task, then it must be capable of assuming
some type of executive control. There may be no need to have asingle central exec-
utive additional to the control that must be capable of being exerted by every short
term memory module. Thisisin contrast to what has traditionally been assumed for
the prefrontal cortex [98].
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16.3.4

Role of prefrontal cortex short term memory systems in visual search
and attention

The same model shown in Figure 16.9 can also be used to help understand the im-
plementation of visual search tasks in the brain [70]. In such avisual search task,
the target stimulus is made known beforehand, and inferior temporal cortex neurons
then respond more when the search target (as compared to a different stimulus) ap-
pears in the receptive field of the IT neuron [16, 15]. The model shows that this
could be implemented by the same system of weakly coupled attractor networks in
PF and IT shown in Figure 16.9 as follows. When the target stimulus is shown, it
isloaded into the PF module from the IT module as described for the delayed match
to sample task. Later, when the display appears with two or more stimuli present,
there is an enhanced response to the target stimulus in the receptive field, because
of the backprojected activity from PF to I T which adds to the firing being produced
by the target stimulus itself [67, 70] (see Figure 16.11). The interacting spatial and
object networks described by [82]) in Chapters 9-11, take this analysis one stage
further, and show that once the PF-IT interaction has set up a greater response to the
search target in IT, this enhanced response can in turn by backprojections to topo-
logically mapped earlier cortical visual areas move the “attentional spotlight” to the
place where the search target is located.

16.3.5

Synaptic modification is needed to set up but not to reuse short term
memory systems

To set up a new short term memory attractor, synaptic modification is needed to
form the new stable attractor. Once the attractor is set up, it may be used repeatedly
when triggered by an appropriate cue to hold the short term memory state active by
continued neuronal firing even without any further synaptic modification (see [37]
and [82]). Thus manipulations that impair the long term potentiation of synapses
(LTP) may impair the formation of new short term memory states, but not the use
of previously learned short term memory states. [37] analyzed many studies of the
effects of blockade of LTP in the hippocampus on spatial working memory tasks,
and found evidence consistent with this prediction. Interestingly, it was found that if
there was alarge change in the delay interval over which the spatial information had
to be remembered, then the task became susceptible, during the transition to the new
delay interval, to the effects of blockade of LTP. The implication is that some new
learning is required when the rat must learn the strategy of retaining information for
longer periods when the retention interval is changed.
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Convergence in the visual system. Right —asit occursin the brain. V1: visual
cortex areaV1; TEO: posterior inferior temporal cortex; TE: inferior temporal
cortex (IT). Left —asimplemented in VisNet. Convergence through the network
is designed to provide fourth layer neurons with information from across the
entireinput retina.

16.4 Invariant visual object recognition

[74] proposed afeature hierarchical model of ventral stream visual object processing
from the primary visual cortex (V1), viaV2 and V4 to the inferior temporal visual
cortex which could learn to represent objects invariantly with respect to position on
the reting, scale, rotation and view. The theory uses a short term (‘trace’) memory
termin an associative learning ruleto help capture the fact that the natural statistics of
the visual world reflect the fact that the same object islikely to be present over short
time periods, for example over 1 or 2 seconds during which an object is seen from
different views. A model of the operation of the system has been implemented in a
four-layer network, corresponding to brain areas V1, V2, V4 and inferior temporal
visual cortex (IT), with convergence to each part of alayer from a small region of
the preceding layer, and with local competition between the neurons within a layer
implemented by local lateral inhibition [20, 82, 83, 117] (see Figure 16.12). During
a learning phase each object is learned. This is done by training the connections
between modules using a trace learning rule with the general form

dwij = oy, x] (16.15)
where 27 is the jth input to the neuron at time step 7, y; is the output of the ith

neuron, and w;; is the jth weight on the ith neuron.
Thetracey,;” isupdated according to

7,7 = (L—n)y" +ny," " (16.16)
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The parameter i € [0, 1] controls the relative contributions to the trace 3, from the
instantaneous firing rate ;™ at time step = and the trace at the previous time step

71

Yi

16.5 Visu_al s_timulus—reward association, emotion, and
motivation

Learning about which visual and other stimuli in the environment are rewarding, pun-
ishing, or neutral is crucia for survival. For example, it takes just one trial to learn
if aseen object is hot when we touch it, and associating that visual stimulus with the
pain may help usto avoid seriousinjury inthe future. Similarly, if we are given anew
food which has an excellent taste, we can learn in one trial to associate the sight of it
withitstaste, so that we can select it in future. In these examples, the previously neu-
tral visual stimuli become conditioned reinforcers by their association with aprimary
(unlearned) reinforcer such as taste or pain. Our examples show that learning about
which stimuli are rewards and punishmentsis very important in the control of moti-
vational behaviour such as feeding and drinking, and in emotional behaviour such as
fear and pleasure. The type of learning involved is pattern association, between the
conditioned and the unconditioned stimulus. This type of learning provides a major
example of how the visual representations provided by the inferior temporal visual
cortex are used by the other parts of the brain [77, 80, 82]. In this Section we con-
sider where in sensory processing this stimulus-reinforcement association learning
occurs, which brain structures areinvolved in this type of learning, how the neuronal
networks for pattern association learning may actually be implemented in these re-
gions, and how the distributed representation about objects provided by the inferior
temporal cortex output is suitable for this pattern association learning.

The crux of the answer to the last question is that the inferior temporal cortex rep-
resentation is ideal for this pattern association learning because it is a transform-
invariant representation of objects, and because the code can be read by a neuronal
system which performs dot products using neuronal ensembles as inputs, which is
precisely what pattern associators in the brain need, because they are implemented
by neurons which perform as their generic computation a dot product of their inputs
with their synaptic weight vectors (see [82] and [92]).

A schematic diagram summarizing some of the conclusions reached [77, 82, 92] is
shown in Figure 16.13. The pathways are shown with more detail in Figure 16.14.
The primate inferior temporal visual cortex provides arepresentation that isindepen-
dent of reward or punishment, and is about objects. The utility of thisis that the out-
put of the inferior temporal visual cortex can be used for many memory and related
functions (including episodic memory, short term memory, and reward/punishment
memory) independently of whether the visual stimulusis currently rewarding or not.
Thus we can learn about objects, and place them in short term memory, indepen-
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Brain Mechanisms of Emotion
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Figure 16.13

Schematic diagram showing the organization of brain networks involved in
learning reinforcement associations of visual and auditory stimuli. The learn-
ing is implemented by pattern association networks in the amygdala and or-
bitofrontal cortex. The visual representation provided by theinferior temporal
cortex isin an appropriate form for this pattern association learning, in that
information about objects can beread from a population of IT neurons by dot-
product neuronal operations.

dently of whether they are currently wanted or not. Thisis a key feature of brain
design. The inferior temporal cortex then projects into two structures, the amyg-
dala and orbitofrontal cortex, that contain representations of primary (unlearned)
reinforcers such as taste and pain. These two brain regions then learn associations
between visual and other previously neutral stimuli, and primary reinforcers[77], us-
ing what is highly likely to be a pattern association network, as illustrated in Figure
16.13. A difference between the primate amygdala and orbitofrontal cortex may be
that the orbitofrontal cortex is set up to perform reversal of these associations very
rapidly, in as little as one trial. Because the amygdala and orbitofrontal cortex rep-
resent primary reinforcers, and learn associations between these and neutral stimuli,
they are key brain regionsin emotions (which can be understood as states elicited by
reinforcers, that is rewards and punishers), and in motivational states such asfeeding
and drinking [77].
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Figure 16.14

Diagrammatic representation of some of the connections described in thischap-
ter. V1, striate visual cortex. V2 and V4, cortical visual areas. In primates, sen-
sory analysis proceedsin the visual system asfar astheinferior temporal cortex
and the primary gustatory cortex; beyond these areas, in for example the amyg-
dalaand orbitofrontal cortex, the hedonic value of the stimuli, and whether they
arereinforcing or are associated with reinforcement, isrepresented (see text).

16.6 Effects of mood on memory and visual processing

The current mood state can affect the cognitive eval uation of events or memories (see
[9], [87]). An exampleisthat when they are in a depressed mood, people tend to re-
call memories that were stored when they were depressed. The recall of depressing
memories when depressed can have the effect of perpetuating the depression, and
this may be a factor with relevance to the etiology and treatment of depression. A
normal function of the effects of mood state on memory recall might be to facilitate
continuity in the interpretation of the reinforcing value of eventsin the environment,
or in the interpretation of an individual’s behaviour by others, or simply to keep be-
haviour motivated to a particular goal. Another possibility isthat the effects of mood
on memory do not have adaptive value, but are a consequence of having a genera
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cortical architecture with backprojections. According to the latter hypothesis, the se-
lection pressure is great for leaving the general architecture operational, rather than
trying to find a genetic way to switch off backprojections just for the projections of
mood systems back to perceptual systems (cf. [86]).

[87] (see dso [75] and [77]) have developed a theory of how the effects of mood
on memory and perception could be implemented in the brain. The architecture,
shown in Figure 16.15, uses the massive backprojections from parts of the brain
where mood is represented, such as the orbitofrontal cortex and amygdala to the
cortical areas such as the inferior temporal visual cortex and hippocampus-related
areas (labelled IT in Figure 16.15) that project into these mood-representing areas
[2, 1]. The model uses an attractor in the mood module (1abelled amygdalain Figure
16.15), which helps the mood to be an enduring state, and also an attractor in IT. The
system is treated as a system of coupled attractors (see [82]), but with an odd twist:
many different perceptual states are associated with any one mood state. Overall,
there is a large number of perceptual / memory states, and only a few mood states,
so that there is a many-to-one relation between perceptua / memory states and the
associated mood states. The network displays the properties that one would expect
(provided that the coupling parameters g between the attractors are weak). These
include the ability of a perceptual input to trigger a mood state in the ‘amygdalad
module if there is not an existing mood, but greater difficulty to induce a new mood
if there is already a strong mood attractor present; and the ability of the mood to
affect via the backprojections which memories are triggered.

An interesting property which was revealed by the model isthat because of the many-
to-few mapping of perceptual to mood states, an effect of a mood was that it tended
to make all the perceptual or memory states associated with a particular mood more
similar then they would otherwise have been. The implication is that the coupling
parameter g for the backprojections must be quite weak, as otherwise interference
increases in the perceptua / memory module (IT in Figure 16.15).
Acknowledgments: Thisresearch was supported by Medical Research Council Pro-
gramme Grant PG9826105, by the MRC Interdisciplinary Research Centre for Cog-
nitive Neuroscience, and by the Human Frontier Science Program.
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