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Box 1. Summary of the architecture and operation of autoassociation or attractor networks 

The prototypical architecture of an autoassociation memory is shown in Fig. S1. The external input 

ei is applied to each neuron i by unmodifiable synapses. This produces firing yi of each neuron. Each 

neuron is connected by a recurrent collateral synaptic connection to the other neurons in the network, 

via associatively modifiable connection weights wij. This architecture effectively enables the vector of 

output firing rates to be associated during learning with itself. Later on, during recall, presentation of 

part of the external input will force some of the output neurons to fire, but through the recurrent 

collateral axons and the modified synapses, other neurons can be brought into activity. This process can 

be repeated a number of times, and recall of a complete pattern may be perfect. Effectively, a pattern 

can be recalled or recognized because of associations formed between its parts. This of course requires 

distributed representations.  

  

Fig. S1 The architecture of an autoassociative neural network. The recurrent collateral 

synaptic weights are excitatory. Inhibitory neurons (not illustrated) must be present to 

control the firing rates. 

  

Training for each desired pattern occurs in a single trial. The firing of every output neuron i is forced 

to a value yi determined by the external input ei Then a Hebb-like associative local learning rule is 

applied to the recurrent synapses in the network: 

δwij = k . yi  . yj         (1) 

where k is a learning rate constant, yi is the activation of the dendrite (the postsynaptic term), yj is the 

presynaptic firing rate, and δwij is the change in the synaptic weight from axon j to neuron i.  This 

learning algorithm is fast, ‘one-shot’, in that a single presentation of an input pattern is all that is needed 

to store that pattern.  

It is notable that in a fully connected network, this will result in a symmetric matrix of synaptic 

weights, that is, the strength of the connection from neuron 1 to neuron 2 will be the same as the strength 

of the connection from neuron 2 to neuron 1 (both implemented via recurrent collateral synapses).  



During recall, an external input e is applied, and produces output firing, operating through a non-

linear activation function. The firing is fed back by the recurrent collateral axons shown in Fig. 3 to 

produce activation of each output neuron through the modified synapses on each output neuron. The 

activation hi produced by the recurrent collateral effect on the ith neuron is, in the standard way, the 

sum of the activations produced in proportion to the firing rate of each axon operating through each 

modified synapses wij, that is, 

hi = ∑j yj wij         (2)  

where the sum is over the input axons to each neuron, indexed by j.  

The output firing yi is a function of the activation produced by the recurrent collateral effect (internal 

recall) and by the external input ei :  

yi = f(hi + ei)        (3) 

The activation function f should be non-linear, and may be for example binary threshold, linear 

threshold, sigmoid, etc. A purely linear system would not produce any categorization of the input 

patterns it receives, and therefore would not be able to effect anything more than a trivial (i.e. linear) 

form of completion and generalization. 

During recall, a part of one of the originally learned stimuli can be presented as an external input. 

The resulting firing is allowed to iterate repeatedly round the recurrent collateral system, gradually on 

each iteration recalling more and more of the originally learned pattern. Completion thus occurs. If a 

pattern is presented during recall that is similar to one of the previously learned patterns, then the 

network settles into a stable recall state in which the firing corresponds to that of the previously learned 

pattern. The network can thus generalize in its recall to the most similar previously learned pattern. 

Important results (cf. Section 3.3.2) characterize how many patterns can be stored in a network in this 

way without interference during recall. 

Details are provided by Rolls (2008, 2016) in Appendices B. 

 

  



Box 2. Summary of the architecture and operation of pattern association networks 

  

 

Fig. S2. The architecture of a pattern association network. An unconditioned stimulus (US) has activity 

or firing rate ei for the i’th neuron, and produces firing yi of the i’th neuron which is an unconditioned 

response (UR). The conditioned stimuli (CS) have activity or firing rate  xj for the j’th axon. During 

learning, a CS is presented at the same time as a US, and the synaptic weights are modified by an 

associative synaptic learning rule  δwij = k . yi  . xj where k is a learning rate constant, and δwij is the 

change in the synaptic weight from axon j to neuron i. During recall, only the CS is presented, and the 

activation hi is calculated as a dot product between the input stimulus and the synaptic weight vector on 

a neuron  hi = ∑j xj wij where the sum is over the input axons to each neuron, indexed by j. The output 

firing yi is a function f of the activation yi = f(hi). The activation function f should be non-linear, and 

may be for example binary threshold, linear threshold, or sigmoid. Inhibitory neurons not shown in the 

figure are part of the way in which the threshold of the activation function is set.  The non-linearity in 

the activation function enables interference from other pattern pairs stored in the network to be 

minimized. The pattern association network thus enables a CS to retrieve a response, the conditioned 

response (CR), that was present as a UR during the learning. An important property is that if a distorted 

CS is presented, generalization occurs to the effects produced by the closest CS during training. Details 

are provided by Rolls (2008, 2016) in Appendices B. 

  



Box 3. Summary of the architecture and operation of competitive networks 

  

 

Fig. S3. The architecture of a competitive network. During training, an input stimulus is presented 

to the synaptic matrix which has random initial weights wij  and produces activation hi of the i’th neuron 

calculated as a dot product between the input stimulus and the synaptic weight vector on a neuron  hi = 

∑j xj wij where the sum is over the input axons to each neuron, indexed by j. The output firing yi is a 

function f of the activation yi = f(hi). The activation function f should be non-linear, and may be for 

example binary threshold, linear threshold, or sigmoid. Inhibitory neurons not shown in the figure are 

part of the way in which the threshold of the activation function is set in which the threshold reflects 

the firing of all the output neurons. This or other competitive mechanisms result in a typically sparse 

set of output neurons having firing after the competition.  

Next an associative synaptic modification rule is applied, while the presynaptic input and the 

postsynaptic output are both present, δwij = k . yi  . xj where k is a learning rate constant, and δwij is the 

change in the synaptic weight from axon j to neuron i.  

Next the synaptic weight vector on each neuron is normalized, to ensure that no one neuron 

dominates the classification. 

This process is repeated for every input pattern in random permuted sequence, and this process is 

repeated for a small number of training epochs.  

After the training, each dendritic weight vector points towards a cluster of patterns in the input space. 

The competitive network has used self-organization with no teacher to categorize the inputs, with 

patterns close in the input space activating the same set of output neurons, and different clusters of 

inputs activating different sets of output neurons.  

Details are provided by Rolls (2008, 2016) in Appendices B. 
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