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Identifying behaviour-related and 
physiological risk factors for suicide 
attempts in the UK Biobank

Bei Zhang    1,2, Jia You    1,2, Edmund T. Rolls    1,3,4, Xiang Wang5,6,7, 
Jujiao Kang    1,2, Yuzhu Li1,2, Ruohan Zhang    4, Wei Zhang1,2, Huifu Wang8, 
Shitong Xiang    1,2, Chun Shen1,2, Yuchao Jiang    1,2, Chao Xie1,2, Jintai Yu    1, 
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Suicide is a global public health challenge, yet considerable uncertainty 
remains regarding the associations of both behaviour-related and 
physiological factors with suicide attempts (SA). Here we first estimated 
polygenic risk scores (PRS) for SA in 334,706 UK Biobank participants  
and conducted phenome-wide association analyses considering  
2,291 factors. We identified 246 (63.07%) behaviour-related and 200  
(10.41%, encompassing neuroimaging, blood and metabolic biomarkers, 
and proteins) physiological factors significantly associated with SA-PRS, 
with robust associations observed in lifestyle factors and mental health. 
Further case–control analyses involving 3,558 SA cases and 149,976 controls 
mirrored behaviour-related associations observed with SA-PRS. Moreover, 
Mendelian randomization analyses supported a potential causal effect of 
liability to 58 factors on SA, such as age at first intercourse, neuroticism, 
smoking, overall health rating and depression. Notably, machine-learning 
classification models based on behaviour-related factors exhibited high 
discriminative accuracy in distinguishing those with and without SA 
(area under the receiver operating characteristic curve 0.909 ± 0.006). 
This study provides comprehensive insights into diverse risk factors 
for SA, shedding light on potential avenues for targeted prevention and 
intervention strategies.

Suicide is a major public health concern, encompassing a spectrum 
of suicidal ideation, plans and attempts, with suicide attempts (SA) 
being a leading cause of death worldwide1. While previous research 
has explored various factors associated with attempted suicide2–4, 
critical research gaps remain.

The existing literature on SA has generally focused on identifying 
a limited set of hypothesized factors, such as psychiatric disorders 
(that is, depression), personality and psychological characteristics 
(that is, hopelessness) and social and family factors (that is, low social 

support and stressful life events), often within relatively small clinical 
samples4–10. This narrow focus may result in additional risk factors 
being overlooked or unknown. Likewise, the relative impact of multi-
faceted risk factors for SA remains largely unknown. Certain factors 
might be statistically significant when studied alone, yet they may not 
demonstrate strong resilience when assessed in conjunction with other 
variables11. A more comprehensive examination of a broader range of 
factors within a large-scale population-based study could help confirm 
existing relationships and reveal new potential targets for intervention.
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also performed within the case–control framework. Moreover, we 
employed bidirectional MR to evaluate potential causal relationships 
between SA and the identified associated risk factors observed in the 
PheWAS and logistic regression analyses. Finally, machine-learning 
models were developed to ascertain the effectiveness of risk factors 
in distinguishing those with and without SA (see Fig. 1 for an overview 
of the study).

Results
Identifying behaviour-related risk factors for SA in PheWAS
Of the 334,706 individuals included in the calculation of PRS for 
SA (SA-PRS) and the subsequent PheWAS, 53.59% were female, and 
the mean (standard deviation, s.d.) age was 56.91 (7.99) years (see  
Supplementary Table 2 for detailed demographic characteristics). In 
the PheWAS analysis, we considered a total of 2,291 factors spanning 
12 categories encompassing both behaviour-related and physiologi-
cal phenotypic types, as outlined in Table 1 and Supplementary Data 
Table 1. Sample sizes for each category are summarized in Table 1. In 
total, we found 246 (63.07% of those examined) behaviour-related 
phenotypes and 200 (10.41%) physiological phenotypes that showed 
significant associations with SA-PRS after Bonferroni correction for 
multiple comparisons (P < 1.94 × 10−5 (0.05/2,576), including multi-
categorical variables). A list of significant results from the PheWAS 
analysis is presented in Supplementary Data Table 2.

Among the examined behaviour-related factors, 246 out of 370 
showed significant associations with SA-PRS after Bonferroni cor-
rection (P < 1.94 × 10−5 (0.05/2,576); Fig. 2a). These significant factors 
included 11 sociodemographic, 43 lifestyle factors, 11 early-life and 
family-history factors, 36 physical measures, 16 cognitive functions 
and 129 mental health (136 associations, including multiple categori-
cal associations) (absolute β > 0.006, β are standardized regression 
coefficients throughout).

Higher SA-PRS was associated with greater Townsend deprivation 
index, lower household income, less likely to own the accommodation 

Moreover, recent suicide-related models5,12–14, such as the biopsy-
chosocial model5, highlighted the complexity of suicide risk devel-
opment, implicating a broad range of contributors from biological, 
psychological, clinical, social and environmental factors. However, 
prior studies have predominately emphasized the influence of 
behaviour-related risk factors on SA2,3. Recent genome-wide associa-
tion studies (GWASs) have suggested a polygenic architecture under-
lying SA10,15,16, implicating the potential role of genetic associations 
(for example, polygenic risk scores (PRS)) in identifying risk factors17. 
To gain a more comprehensive understanding, it is crucial to investi-
gate both behaviour-related and physiological systems concurrently, 
shedding light on their complex interplay. Last, very few studies, to 
our knowledge, have evaluated the causal relationships between risk 
factors and SA18, highlighting the need for a deeper investigation into 
underlying causal mechanisms.

The UK Biobank provides an unparalleled opportunity to nar-
row these gaps, given that it collects rich information across multiple 
domains with a large sample size. Advanced analytical approaches, 
such as phenome-wide association study (PheWAS)19 and Mendelian 
randomization (MR) analyses20, can be employed to rigorously assess 
the putative associations and reduce false positive findings21–23. The 
PheWAS, in particular, offers valuable insights for identifying risk 
factors that probably reflect underlying causal relationships, as it 
is less constrained by prior assumptions, leverages solid biological 
knowledge from birth, making it less susceptible to confounding and 
reverse causality, and has the potential to identify risk factors in the 
early stages of disease development24–26.

In this article, harnessing the power of the UK Biobank, we aimed to 
systematically assess and rank both behaviour-related and physiologi-
cal risk factors for SA using several data-driven approaches. Specifi-
cally, by applying PRS for SA as a proxy for SA risk, we first conducted 
PheWAS to identify factors associated with genetic predisposition 
to SA comprehensively. Subsequently, logistic regression analyses 
for individuals who have attempted suicide and a control group were 
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Fig. 1 | Overview of the study. Analytical procedures to identify behaviour-related and physiological risk factors associated with SA in the UK Biobank.
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that they live in, heavy manual and shift jobs, and younger age com-
pleting full-time education (absolute β > 0.017, PBOF = 3.81 × 10−156 to 
2.22 × 10−9). Besides, SA-PRS was significantly associated with multiple 
lifestyle factors, reporting that sexual factors (for example, lifetime 
number of sexual partners), sleep problems (for example, insomnia), 
smoking behaviours (for example, both current and ever smoking), 
alcohol consumption (for example, alcohol intake frequency), diet (for 
example, salt added to food), electronic device use (for example, usage 
of mobile phone and playing computer games) and physical activity 
(for example, time spent watching television) were positively cor-
related with SA-PRS (β = 0.016 to 0.153, PBOF = 8.13 × 10−148 to 0.015). In 
contrast, some sexual factors and diet, such as age at first intercourse, 
and cereal, cheese and dried fruit intake, were negatively associated 
with SA-PRS (β < −0.015, PBOF < 0.032).

Moreover, Bonferroni-significant associations were also iden-
tified between higher SA-PRS and maternal smoking around birth, 
adoption and more siblings (β = 0.040 to 0.119, PBOF = 4.24 × 10−79 to 
6.79 × 10−12), as well as a range of disease factors such as cancer, diabe-
tes and body mass index (BMI; β = −0.090 to 0.099, PBOF = 5.17 × 10−183 
to 0.038), with the most significant item being poorer overall health 
ratings. SA-PRS was also related to cognitive functions, such as fluid 
intelligence, prospective memory, trail making, pairs matching and 
reaction time (absolute β = −0.085 to 0.074, PBOF = 7.39 × 10−54 to 0.021).  

Better performance on all cognitive tests was associated with lower 
SA-PRS. Substantial significant associations were identified in 
self-reported psychological traits, including the sum of traumatic 
events, depressive symptoms, anxiety symptoms, mental distress, 
subjective wellbeing, psychotic experiences, mania, neuroticism score 
and so on (absolute β > 0.021, PBOF = 4.41 × 10−229 to 0.045). Of these, in 
addition to happiness and subjective wellbeing, more severe symptoms 
were associated with higher SA-PRS.

Identifying physiological risk factors for SA in PheWAS
The SA-PRS demonstrated significant associations with 200 out of 
1,921 physiological phenotypes that survived Bonferroni correction 
(P < 1.94 × 10−5 (0.05/2,576), absolute β = 0.008 to 0.050). These asso-
ciations comprised 20 neuroimaging phenotypes (including 13 grey 
matter volumes and 7 white matter microstructures), 76 blood and 
metabolic biomarkers (encompassing 18 blood cell counts, 14 blood 
biochemistries and 44 nuclear magnetic resonance (NMR) metabolites) 
and 104 proteins. Detailed results of the PheWAS analysis are presented 
in Supplementary Data Table 2.

To start with the neuroimaging phenotypes, lower grey matter 
volumes were associated with higher SA-PRS in 13 out of 94 brain 
regions following Bonferroni correction (β = −0.023 to −0.019, 
PBOF = 5.10 × 10−4 to 0.044), including the right insula, amygdala, ven-
tromedial prefrontal cortex (vmPFC), medial and lateral orbitofrontal 
cortex (OFC), supramarginal gyrus, left superior temporal gyrus, 
bilateral middle cingulate gyri, Heschl’s gyrus and Rolandic opercu-
lum (Fig. 3a). Besides, Bonferroni-significant associations were also 
found between SA-PRS and 7 out of 135 white matter microstructures 
(Fig. 3b). Decreased fractional anisotropy (FA, such as in forceps minor, 
medial lemniscus, and posterior and superior thalamic radiation, 
β = −0.033 to −0.026, PBOF = 3.87 × 10−5 to 0.031) and increased orienta-
tion dispersion (OD, medial lemniscus, β = 0.026, PBOF = 0.020) were 
associated with higher SA-PRS.

For blood and metabolic biomarkers (Fig. 4a), all 18 significant 
blood cell counts associations showed an identical effect direction with 
SA-PRS (β = 0.008 to 0.029, PBOF = 1.46 × 10−55 to 0.005) except for mono-
cyte percentage. That is, higher white blood cell counts (for exam-
ple, leukocytes and lymphocyte count) and red blood cell index (for 
example, light scatter reticulocyte count) were associated with higher 
SA-PRS (β = 0.008 to 0.029, PBOF = 1.46 × 10−55 to 4.95 × 10−3). In addition, 
for blood biochemistry, higher C-reactive protein, triglycerides and 
gamma glutamyltransferase (β = 0.009 to 0.029, PBOF = 2.21 × 10−64 to 
1.65 × 10−3), and lower IGF-1, vitamin D and high-density lipoprotein 
(HDL) cholesterol (β = −0.020 to −0.008, PBOF = 2.17 × 10−28 to 1.45 × 10−3) 
demonstrated the most significant correlations with higher SA-PRS. 
Similarly, SA-PRS was positively correlated with inflammation vari-
ables (for example, glycoprotein acetyls) and triglyceride variables 
(for example, triglycerides in small HDL) but negatively correlated with 
cholesterol variables (for example, cholesterol in very large HDL) within 
NMR metabolomics (β = −0.024 to 0.027, PBOF = 4.06 × 10−11 to 0.038).

Of all 1463 unique proteins, 104 showed significant associations 
with SA-PRS after Bonferroni correction (absolute β = 0.015 to 0.050, 
PBOF = 1.50 × 10−17 to 0.049; Fig. 4b,c). Relative to proteins in other pan-
els, associations of inflammatory proteins with SA-PRS were more 
pronounced, with BTN3A2 and CXCL17 showing the most significant 
associations (β = 0.036 to 0.050, PBOF = 1.50 × 10−17 to 2.15 × 10−11).

Cross-validation of risk factors in case–control analyses
To validate the risk factors identified in PheWAS, we performed logis-
tic regression analyses for all phenotypes on a dataset comprising 
3,558 SA cases and 149,976 controls (56.28% female; mean [s.d.] age, 
56.03 [7.72] years). The demographic characteristics of the two groups 
are detailed in Supplementary Table 2, and the mean sample sizes for 
each category are reported in Table 1. Our logistic regression results 
revealed that 277 behaviour-related phenotypes (334 associations, 

Table 1 | Summary of number of phenotypes and sample 
sizes within a category

Category Number 
of factors

Sample size

PheWAS  
(mean [range])

Logistic regression 
analyses (mean 
SA cases versus 
controls)

Behaviour-related 
phenotypes

370

Sociodemographic 13 238,542 
[30,537–334,258]

2,338 versus 95,036

Lifestyle factors 73 254,436 
[1,208–334,616]

2,826 versus 117,533

Early-life and 
family-history factors

17 248,230 
[74,698–334,201]

2,653 versus 112,941

Mental health 177 102,734 
[780–333,488]

2,486 versus 101,892

Physical measures 64 226,815 
[7,110–334,072]

2,501 versus 102,710

Cognitive functions 26 101,490 
[1,999–334,335]

1,082 versus 47,363

Physiological 
phenotypes

1,921

Regional grey matter 
volumes

94 27,092 
[27,092–27,092]

599 versus 26,048

White matter 
microstructure

135 27,880 
[27,880–27,881]

602 versus 26,599

Blood count 31 323,351 
[319,508–324,755]

3,375 versus 143,089

Blood biochemistry 30 287,541 
[28,479–319,079]

2,987 versus 127,229

NMR metabolomics 168 80,521 
[77,032–80,567]

851 versus 35,251

Proteomic 
phenotypes

1,463 34,329 
[9,365–35,307]

345 versus 15,261

A total of 370 behaviour-related phenotypes (6 categories) and 1921 physiological 
phenotypes (6 categories, including 229 neuroimaging variables (2 categories), 229 blood 
and metabolic biomarkers (3 categories), and 1,463 unique proteins) are included. Where 
there are multiple sample sizes in a category, the mean sample size (N) is presented. NMR, 
nuclear magnetic resonance.
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including multiple categorical associations) reached significance after  
Bonferroni correction (P < 2.12 × 10−5 (0.05/2,360), β = −4.339 to 8.940). 
Of all behaviour-related categories, mental health stands out as the most 
significant (Fig. 1b). Notably, about 83% of significant behaviour-related 
associations identified in PheWAS also remained significant in the logis-
tic regression analyses, highlighting the consistency of PRS in identify-
ing behaviour-related risk factors with case–control investigations.

In addition, our logistic regression analyses identified that 51 
physiological phenotypes reached statistical significance following 
Bonferroni correction (P < 2.12 × 10−5 (0.05/2,360)), including 29 blood 
and metabolic biomarkers (11 blood cell counts, 17 blood biochem-
istries and 1 NMR metabolite, β = −2.386 to 8.056, PBOF = 3.73 × 10−22 
to 0.041), and 22 proteins (β = −0.912 to 0.845, PBOF = 1.74 × 10−8 to 
0.037). Although the significant physiological factors identified in 
logistic regression analyses were somewhat less consistent in PheWAS  
(37 duplicates), the top significant factors within a category displayed 
similarity. For instance, proteins such as CXCL17, blood biochemistry 
markers such as triglycerides, C-reactive protein, gamma glutamyl-
transferase and IGF-1, and blood cell measures such as neutrophil and 

leukocyte count emerged as top significant phenotypes in their respec-
tive categories in both the PheWAS and logistic regression analyses. 
A comprehensive list of significant results in the logistic regression 
analyses is presented in Supplementary Data Table 3.

MR on risk factors and SA
To explore the potential causal effects of phenotypes on SA, we first 
conducted MR analyses on risk factors that were both significant in 
PheWAS and case–control analyses and SA. Results obtained using the 
inverse variance weighted (IVW) method showed that, out of the 198 
examined factors, 86 behaviour-related factors reached significance 
at PIVW < 0.05 and 57 remained significant after Bonferroni correction 
(PIVW < 2.53 × 10−4 (0.05/198); Fig. 5). These Bonferroni-corrected 
factors consistently exhibited the same direction of effect observed 
in the PheWAS and case–control analyses. Specifically, these fac-
tors consisted of four sociodemographic factors (odds ratio 
(OR)IVW = 0.521 to 2.041, PBOF = 1.77 × 10−5 to 0.032), including less 
average household income, higher Townsend deprivation index, 
more numbers of vehicles in household, and heavy manual or physical 
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Fig. 2 | Significance plots for behaviour-related phenotypes associated  
with PRS for SA in PheWAS and associated with SA in case–control analyses. 
a, Significance plots for behaviour-related phenotypes associated with PRS for 
SA in PheWAS. Triangles indicate a negative association with PRS for SA, whereas 
dots represent a positive association. The top 22 significant phenotypes are 
annotated (P < 1.94 × 10−5 (0.05/2,576)). Note that higher overall health rating 
scores indicated poorer health in the UK Biobank (Field ID 2178). b, Significance 
plots for behaviour-related phenotypes associated with SA in case–control 
analyses. Triangles indicate a negative association with SA, whereas dots 

represent a positive association. The top 10 significant phenotypes are annotated 
(P < 2.12 × 10−5 (0.05/2,360)). In both plots, each dot or triangle corresponds to 
a specific phenotype, and their respective colours denote their corresponding 
categories. The x axis illustrates six distinct categories, and the y axis represents 
the −log10 of uncorrected P values of the two-sided test. Dashed black lines 
denote the Bonferroni threshold for multiple comparisons (α = 0.05). The 
complete significant results are detailed in Supplementary Data Tables 2 and 
3. PHQ4, Patient Health Questionnaire 4 and its four subitems; PHQ9, Patient 
Health Questionnaire 9.
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jobs, 11 measures in lifestyle (ORIVW = 0.239 to 5.888, PBOF = 8.32 × 10−81 
to 0.045), including insomnia, smoking, sexual factors (age at first 
intercourse and lifetime number of sexual partners), alcohol intake 
and diets (cereal intake and salt added to food), 18 physical meas-
urements (ORIVW = 0.746 to 3.370, PBOF = 2.83 × 10−31 to 0.040) and 24 
measures in mental health (ORIVW = 1.218 to 53.521, PBOF = 5.84 × 10−36 
to 0.013). Important physical measurements included overall health 
rating (poorer health), higher BMI, long-standing illness, disability 
or infirmity, and higher body fat percentage. Among mental health 
variables, neuroticism had the most significant effect, followed by 
depression, seeing psychiatrists for anxiety or depression, sum of 
traumatic events, loneliness and so on.

In addition, we also found nine physiological phenotypes as 
potential causal factors for SA at PIVW < 0.05, but only one biomarker 
remained significant after Bonferroni correction: white blood cell 
(leukocyte) count (ORIVW = 1.110, PBOF = 3.74 × 10−4). For the above 
Bonferroni-significant results, no factors showed substantial hori-
zontal pleiotropy (as indicated by PIntercept for all MR–Egger intercept 
>0.01). For risk factors showing potential single-nucleotide polymor-
phisms (SNPs) heterogeneity, we employed an additional multiplica-
tive random-effects model for validation. This validation approach 
confirmed the retention of all significant factors (PBOF < 0.045).  
Additionally, results derived using the weighted median method were 
overall similar to those identified using the IVW method. Further  
details regarding forward MR results are presented in Supplementary 
Data Table 4.

Except for the phenotypes described above, we also performed 
MR between SA and factors that were significant only in PheWAS or 

case–control analyses. We identified nine additional factors as causal 
factors for SA after Bonferroni correction (PIVW < 1.83 × 10−4 (0.05/273)), 
including younger age completing full-time education (ORIVW = 0.575, 
PBOF = 1.04 × 10−9), higher fluid intelligence score (ORIVW = 0.921, 
PBOF = 3.64 × 10−4) and BTN3A2 protein (ORIVW = 1.052, PBOF = 0.038). 
For a comprehensive overview of the forward MR results obtained 
from the three different methods and sensitivity analyses for all tested 
factors, please refer to Supplementary Data Table 4.

Conversely, we identified potential causal effects of SA on  
55 factors that survived Bonferroni correction (PIVW < 2.63 × 10−4 
(0.05/190)). Among these, 29 showed substantial horizontal pleiot-
ropy (PIntercept < 0.05) but failed to reach significance in the MR–Egger 
regression method. Therefore, Bonferroni-corrected significant causal 
effects of SA on 26 phenotypes were identified (Supplementary Fig. 1). 
These factors included one physical measure (overall health rating, 
ORIVW = 1.048, PBOF = 2.62 × 10−5), 6 lifestyle factors (for example, alco-
hol usually taken with meals; ORIVW = 0.966 to 1.064, PBOF = 3.74 × 10−10 
to 0.045), 13 measures in mental health (for example, risk-taking and 
sum of psychotic experiences; ORIVW = 0.969 to 1.088, PBOF = 1.54 × 10−5 
to 0.019), 5 sociodemographic (for example, average total house-
hold income; ORIVW = 0.941 to 1.039, PBOF = 5.91 × 10−5 to 0.005) and 1 
protein (alkaline phosphatase, placental type (ALPP); ORIVW = 1.082, 
PBOF = 0.029). These factors remained significant in the multiplica-
tive random-effects models (PBOF < 0.046). Of the 271 factors in the 
additional analyses, four factors survived Bonferroni correction as 
causal outcomes of SA (PIVW < 1.83 × 10−4 (0.05/271)), including less 
work satisfaction (ORIVW = 1.048, PBOF = 0.002) and talking therapies 
to treat depression (ORIVW = 1.021, PBOF = 0.029). The directional results 
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Fig. 3 | Maps of significant associations between PRS for SA and 
neuroimaging phenotypes. a, Lower grey matter volumes of cortical (top) and 
subcortical (bottom) regions are significantly associated with higher PRS for SA. 
These brain regions survived Bonferroni correction for multiple comparisons 
(P < 1.94 × 10−5 (0.05/2,576)) in the two-sided test for linear regression between 
PRS for SA and each phenotype. b, Decreased white matter microstructure in FA 

are significantly associated with higher PRS for SA. These brain regions survived 
Bonferroni correction for multiple comparisons (P < 1.94 × 10−5 (0.05/2,576)) in 
the two-sided test for linear regression between PRS for SA and each phenotype. 
In both plots, the shading represents the standardized effect size (β), with darker 
shading indicating larger absolute of β values.
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obtained using three methods and sensitivity analyses are detailed in 
Supplementary Data Table 5.

Machine-learning classification models for SA
To further assess the effectiveness of risk factors in differentiating 
individuals with and without SA, we developed machine-learning clas-
sification models for SA based on behaviour-related, metabolic and 
proteomic variables, respectively. Taking the behaviour-related SA 
classification model as an example, as depicted in Fig. 6a, a set of top 
30 behaviour-related predictors were exhibited and sorted by their 
importance to the SA classification task. Following a sequential forward 

selection strategy, the top 16 variables were chosen as the final predic-
tors for the machine-learning model development. Among these, the 
most important predictors were suffering mental distress preventing 
usual activities, feelings of worthlessness during the worst period of 
depression, age at first episode of depression, seeing psychiatrists 
for anxiety or depression, and thoughts of death during depression 
(Fig. 6b). Most of these important predictors were derived from the 
self-reported questionnaires. For instance, the predictor related to suf-
fering mental distress was obtained through a specific question: ‘In your 
life, have you suffered from a period of mental distress that prevented 
you from doing your usual activities?’. Further details regarding the 
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Fig. 5 | MR analysis between risk factors and SA. The primary method employed 
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of each phenotype are presented in Supplementary Data Table 4. The top 55 
mental health risk factors are shown in the figure, and details of the remaining 
25 non-significant mental health factors are presented in Supplementary Data 
Table 4. Note that, in the UK Biobank, higher scores for happiness (Field ID 4526), 
financial situation satisfaction (Field ID 4581) and friendship satisfaction (Field 
ID 4570) indicated less happiness or satisfactions. CI, confidence interval; PHQ4, 
Patient Health Questionnaire 4; PHQ9, Patient Health Questionnaire 9.
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acquisition of the top 16 predictors are presented in Supplementary 
Data Table 6. Overall, the area under the receiver operating charac-
teristic curve (AUC) of the behaviour-related SA classification model 
reached 0.909 ± 0.006 (Fig. 6c), suggesting a strong discrimination 
performance. The optimal cutoff value for detecting future SA events 
was 0.02, determined upon the achievement of the largest Youden 
index. Under this threshold, the behaviour-related model achieved 
precision, recall, accuracy, specificity and F1 scores of 0.097 ± 0.007, 
0.86 ± 0.012, 0.812 ± 0.016, 0.81 ± 0.016 and 0.174 ± 0.011, respectively. 

Additional relevant statistics calculated under other thresholds ranging 
from 0.05 to 0.5 at a step of 0.05 are provided in Supplementary Data 
Table 7. However, the AUCs for the metabolic and proteomic models 
were notably lower, at 0.601 ± 0.039 and 0.702 ± 0.040, respectively 
(Supplementary Figs. 2 and 3).

Mediation of behaviour-related risk factors on SA
To examine whether the effect of behaviour-related risk factors on SA 
could be mediated by brain structures and/or molecular biomarkers, 
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Fig. 6 | Predictor selection, SHAP visualization and performance of machine-
learning classification model based on behaviour-related phenotypes. 
a, Sequential forward selection of behaviour-related variables. The bar chart 
displays variables sorted by importance in the SA classification task. The line 
chart shows the AUCs (right axis) on the inclusion of variables one by each 
iteration, and shaded regions represent corresponding 95% confidence intervals 
derived from cross-validation. The top 16 predictors (coloured in red) were finally 
selected for model development. b, SHAP visualization of selected predictors. 
Each participant is represented as a data point. The width of the horizontal 
bars reflects their impact on model predictions, with a wider range indicating 
a larger impact. The colour of the horizontal bars represents the magnitude of 

predictors, which was coded in a gradient from blue (low) to red (high), shown 
as the colour bar on the right-hand side. The x axis indicates the likelihood of 
developing SA (right) or being healthy (left). Using the predictor ‘suffering 
mental distress’ as an example, those with more mental distress (coloured red) 
are more likely to attempt suicide (right side), while those with less mental 
distress (coloured blue) tend not to attempt suicide (left side). We leveraged all 
analysed individuals by aggregating samples from each of the testing sets within 
cross-validation (N = 153,534). c, AUC plots for the behaviour-related phenotype-
based SA classification model. The shaded regions represent 95% confidence 
intervals derived from cross-validation.
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we constructed four mediation models (Methods). We observed that 
the path from brain structure to blood biochemistry significantly 
mediated the effect of multiple factors on SA, including tobacco 
smoking (indirect β = 3.12 × 10−5, P = 0.046), ever-smoked (indirect 
β = 3.94 × 10−5, P = 0.039), seeing psychiatrists for anxiety/depression 
(indirect β = 2.14 × 10−5, P = 0.047) and numbers of vehicles in the house-
hold (indirect β = −2.20 × 10−5, P = 0.046; see Fig. 7a for an example 
of tobacco smoking) in the first mediation model, while none of the 
significant mediation effects was found via the path from molecular 
biomarkers to brain structure in the second mediation model. In the 
third and fourth models, when considering the mediator, separately, 
we found that the effect of multiple factors on SA was individually medi-
ated by brain structure and/or molecular biomarkers. Specifically, the 
association of neuroticism with SA was mediated by blood biochemistry 
(indirect β = 9.28 × 10−6, P = 0.004), blood cells (indirect β = 5.90 × 10−6, 
P = 0.017) and proteins (indirect β = 4.02 × 10−5, P = 0.028), respectively 
(Fig. 7b). Similar mediations were identified for factors such as age at 
first intercourse, depression, sleeplessness, risk-taking and loneliness. 
The NMR metabolites significantly mediated the effect of irritabil-
ity on SA (indirect β = 8.28 × 10−5, P = 0.048; Fig. 7d). Brain structure 
significantly mediated the effect of BMI on SA (indirect β = 3.71 × 10−5, 
P = 0.027; Fig. 7c). More details of the mediation of behaviour-related 
risk factors on SA are provided in Supplementary Data Table 8.

Gender-stratified analyses
To explore potential sex-specific risk factors associated with PRS for 
SA, we conducted a gender-stratified analysis in PheWAS. Our results 
identified 203 behaviour-related and 87 physiological phenotypes 
significantly associated with SA-PRS for women after Bonferroni cor-
rection for multiple comparisons (β > 0.011, PBOF = 2.73 × 10−197 to 0.046). 
Similarly, for men, 199 behaviour-related and 73 physiological associa-
tions survived Bonferroni correction (β > 0.011, PBOF = 3.81 × 10−138 to 
0.049). Of these identified risk factors, 202 were significant in both 

genders, indicating a high degree of overlap in risk factors between 
men and women. However, 88 risk factors were female specific, and 
70 were male specific.

In terms of female-specific risk factors, mental health (n = 24) 
and NMR metabolism (n = 42) exhibited higher numbers of associ-
ations. Notably, the most significant female-specific factors were 
trauma-related factors in the mental health category, including 
whether an individual has been sexually assaulted, physically abused 
by a partner or ex-partner, belittled by a partner or ex-partner and 
sexually molested as a child (absolute β > 0.086, PBOF = 6.14 × 10−25 to 
1.66 × 10−17). On the other hand, male-specific risk factors included 
28 proteins, 14 mental health variables, 8 physical measures and 5 
grey matter volumes, among others. Specifically, the most significant 
behaviour-related factors were the number of people living together, 
alcohol consumption, fresh fruit intake and experiences of physical vio-
lence as victims of crime. Additionally, specific proteins (β = −0.037 to 
0.045, PBOF = 2.49 × 10−5 to 0.046), such as FGF21, F9 and ASGR1, showed 
significant associations with SA-PRS only in men. Further detailed 
reports of gender-stratified analyses are shown in Supplementary 
Data Tables 9 and 10.

Discussion
To the best of our knowledge, this represents the most extensive 
study so far that unveiled both associations and causal relation-
ships between a wide array of behaviour-related and physiological 
factors and SA in adults. We systematically identified and ranked 
246 behaviour-related and 200 physiological factors that displayed 
Bonferroni-significant associations with genetic predisposition to SA. 
Among these, behaviour-related measurements, particularly mental 
health and lifestyle factors, exhibited stronger associations. Addition-
ally, these significant behaviour-related PRS associations were consist-
ently identified in case–control analyses. Importantly, of the risk factors 
significantly associated with both PRS and SA, we further suggested 
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SA (dependent variable) via brain structure and/or molecular biomarkers 
(mediators). a, The indirect pathway of the effect of tobacco smoking on SA 
via brain structure and blood biochemistry was significant (indirect effect: 
a1 × b2 × d21 = 3.12 × 10−5, P = 0.046, coloured blue). Meanwhile, brain structure 
(coloured purple), but not blood biochemistry (coloured orange), significantly 
mediated the association of tobacco smoking with SA. b, The effect of 
neuroticism on SA was significantly mediated by blood cells (coloured green, 
indirect effect: a × b = 5.90 × 10−6, P = 0.017), blood biochemistry (coloured 
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that 57 behaviour-related factors and 1 biomarker were causal factors 
for SA after Bonferroni correction. Our utilization of machine-learning 
classification models, anchored in behaviour-related factors (but not 
physiological factors), demonstrated a remarkable capacity to dis-
criminate individuals with a history of SA accurately. This underscores 
the significance of behaviour-related factors such as suffering mental 
distress and feelings of worthlessness in the context of suicide risk.

The robust associations observed in behaviour-related factors, 
particularly those related to mental health and lifestyle measures, 
align with findings from previous studies, including one that employed 
machine-learning approaches to predict SA risk in children27. They 
demonstrated that predictive values for social-environmental, cogni-
tive and clinical psychiatric factors were higher than for physiological 
traits like neuroimaging. We propose two plausible explanations for 
this observation. First, as highlighted in the biopsychosocial model 
of suicide5, physiological measurements such as neuroimaging vari-
ables, as proximal factors, were more sensitive to whether suicidal 
behaviours are current or more distal28. In contrast, the assessment 
of SA in the UK Biobank relied on prior attempt history, thus placing 
greater emphasis on distal behaviour-related risk factors, such as 
lifestyle, early-life experiences and family history29. Second, previous 
studies have consistently highlighted a high prevalence of psychiatric 
disorders among individuals with a history of SA30. This, coupled with 
the shared genetic aetiology between SA and psychiatric disorders16, 
underscores the salience of mental health as a key risk category.

Genetic epidemiology studies have consistently shown that major 
depressive disorder exhibits the largest genetic overlap with SA among 
all psychiatric disorders15, and depressive symptom was the most sig-
nificant predictor for SA31. Consistent with these findings, our results 
evidenced a potential causal effect of liability to depression (includ-
ing depression diagnosed by a professional and sum of depression 
symptoms) on SA. This underscores the importance of addressing 
depression as a important risk factor for SA. In addition to depression, 
neuroticism has consistently emerged as a critical factor associated 
with SA, in both our study and previous research31. We further support 
that neuroticism was one of the most robust risk factors contributing 
to SA32, which was potentially mediated by physiological measures 
including elevated blood cells, biochemistries and proteins. Interest-
ingly, our machine-learning classification models emphasized that 
suffering from mental distress stands out as the most pivotal predictor 
for identifying individuals with a history of SA. This observation aligns 
with the hypothesis put forward by Shneidman (1993)33 that psycho-
logical pain is a particularly important trigger for suicide behaviours.

While brain traits may not have been considered promising in pre-
dicting SA29,34,35, our study uncovered lower grey volumes in several key 
brain regions related to higher SA-PRS, such as medial and lateral OFC, 
insula, amygdala and vmPFC. Notably, these findings are largely con-
sistent with a recent review paper that highlighted the neurobiological 
substrates of SA, emphasizing a dysfunctional emotion network36. 
Among these brain regions, the insula, in particular, exhibited the 
most significant effects, which was consistent with previous findings 
reporting smaller insula volume in adult suicide attempters across vari-
ous mental disorders37–39. Additionally, previous studies also provided 
evidence that SA individuals with bipolar disorders demonstrated 
lower grey matter volume in the lateral OFC40. SA individuals with major 
depressive disorder exhibited weaker activation in the lateral OFC dur-
ing decision-making tasks41 but greater activation in response to angry 
versus neutral faces42, suggesting that the involvements of the insula 
and lateral OFC in SA may play dissociable roles in distinct behavioural 
impairments such as emotion and decision-making.

Our results also highlighted the potential important role of 
immune–inflammatory pathways in SA. For blood and metabolic bio-
markers, increased white blood cell and lymphocyte counts, as well 
as immunometabolic factors such as C-reactive protein, emerged as 
robust associations with SA-PRS. Additionally, BTN3A2 and CXCL17, 

the proteins in the inflammation panel, were identified as the most sig-
nificant protein associated with SA-PRS. Importantly, the white blood 
cell (leukocyte) count and BTN3A2 were important contributors for 
SA risk. These findings align with prior post-mortem investigations on 
depressed individuals who died by suicide, which revealed disruptions 
in glucocorticoid and inflammatory responses in the brain43. The conver-
gence of evidence points to the important role of inflammatory profiles 
in contributing to SA, which could potentially be linked to a dysregulated  
stress response system and their relevant downstream effects12.

While our study has many strengths, such as benefitting from 
a large population-based sample, comprehensively recorded fac-
tors, investigations of causal relationships and utilization of various 
data-driven approaches, there are several limitations to consider. First, 
the information available from the UK Biobank did not provide specific 
dates for the first SA. To capture the temporal dynamics and trajectory 
of differences before and after the onset of suicidal behaviours, longitu-
dinal data and a high-risk participant group would be necessary. Second, 
participants included in this study are primarily middle- to late-aged 
British individuals of European ancestry. Factors such as ageing, the 
long-term consequences of early developmental deficits, and cultural 
influences may impact the variability in phenotypes within this specific 
age range, ancestry and region. Furthermore, it is crucial to acknowl-
edge the inherent limitations associated with the UK Biobank dataset, 
particularly the presence of a ‘healthy volunteer’ bias44. This bias arises 
due to the voluntary nature of participation, potentially resulting in 
an overrepresentation of individuals who exhibit better health and are 
more inclined to participate in research endeavours. Consequently, 
the generalizability of our findings to broader populations may be 
constrained, and it would be of interest to address this in the future.

Methods
Study population
The UK Biobank is a population-based cohort comprising over 500,000 
participants in the United Kingdom aged between 37 and 73 years and 
recruited between 2006 and 2010 (http://www.ukbiobank.ac.uk). 
SA were evaluated in two steps: first, participants were queried with 
a self-report question (Data-Field ID 20480, ‘Have you deliberately 
harmed yourself, whether or not you meant to end your life?’) to iden-
tify individuals who engaged in self-harm (n = 6,861) and those who 
did not (n = 149,976). For individuals reporting self-harm, a subse-
quent question (Data-Field ID 20483, ‘Have you harmed yourself with 
the intention to end your life?’) was asked to distinguish between SA 
(n = 3,558) and non-suicidal self-injury (n = 3,303). Individuals who 
responded with ‘Yes’ to both questions were categorized as SA cases 
(n = 3,558), while those who responded with ‘No’ to the first question 
were identified as controls (n = 149,976). Of the 3,558 participants who 
attempted suicide, an additional question (Data-Field ID 20482) indi-
cated that 921 had made a cumulative total of three or more attempts, 
673 had made two attempts, 1,924 had made one attempt and 40 had 
made at least one attempt but preferred not to disclose the specific 
number. The UK Biobank has received research tissue bank approval 
from the North West Multi-centre Research Ethics Committee, and 
informed consent was obtained from all participants.

PRS for SA
Genotype data were available for 502,493 participants in the UK 
Biobank v3 imputation. Detailed genotyping and quality control pro-
cedures performed by UK Biobank have been described in a previous 
publication45. Our study excluded SNPs with call rates <95%, minor allele 
frequency <0.5% and deviation from the Hardy–Weinberg equilibrium 
with P < 1 × 10−6. Participants with less than 5% missing rates, not outliers 
in heterozygosity, who had no sex chromosome aneuploidy, of British 
ancestry, and who had no more than ten putative third-degree relatives 
in the kinship table were selected. After the quality control, 9,910,057 
SNPs and 337,138 participants remained for analysis.
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PRS for SA were calculated on the basis of the summary statistics 
from a European ancestry SA GWAS meta-analysis involving 14 cohorts 
from a previous study46. Note that the initial publication included 
15 cohorts for calculating European ancestry GWAS meta-analysis, 
representing the largest study on SA so far. To avoid sample overlap, 
we excluded data from the UK Biobank and generated a new GWAS 
meta-analysis with the remaining 14 cohorts, involving 33,353 SA cases 
and 444,626 controls. For further details of this GWAS summary statis-
tics, refer to the study conducted by Docherty et al.46 and Supplemen-
tary Table 1. PRS was calculated using PRS-CS47, a method employing a 
Bayesian regression framework to apply continuous shrinkage priors 
on the effect sizes of SNPs in the PRS. These priors are adaptive to 
both the strength of their association signal in the discovery GWAS 
and the linkage disequilibrium (LD) structure from an external refer-
ence panel. Given that both the discovery GWAS and target datasets in 
our study are of European ancestry, LD between SNPs was estimated 
using the 1000 Genomes European reference panels48. We performed 
PRS-CS based on the PRS-CSx tool (https://github.com/getian107/
PRScsx), using the auto models that learn the phi parameter from the 
discovery GWAS, as well as the default settings for other parameters. 
PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/) was used to 
weigh posterior effect sizes of SNPs and to aggregate all SNPs into 
PRS for each individual in the UK Biobank sample. The PRS for suicide 
attempters was significantly higher than for controls. Note that, to 
minimize sample overlap between the PheWAS and the case–control 
analyses, individuals with SA (n = 2,432) were excluded from the sub-
sequent PheWAS calculation, resulting in a total of 334,706 samples 
in identifying risk factors associated with genetic predisposition to 
SA. In addition to the PRS-CS, we also constructed the PRS using the 
clumping and thresholding (PRS-CT) approach. The PheWAS results 
derived from the PRS-CT approach were generally consistent with those 
resulting from the PRS-CS approach. For further details on PheWAS 
results from the PRS-CT approach, see Supplementary Information 
(p. 11) and Supplementary Data Table 13.

Phenotypes
Behaviour-related phenotypes. Behaviour-related phenotypes con-
sist of six broad categories (Table 1), containing 370 variables in total. 
(1) Sociodemographic factors included items on education, employ-
ment and household information. (2) Lifestyle factors consisted of 
items on physical activity, sleep, smoking, alcohol consumption, diet, 
electronic device use, sun exposure and sexual factors. (3) Early-life 
and family-history factors contained early-life measures such as 
adoption and maternal smoking, and family-history variables such 
as parents’ age and illnesses. (4) Mental health included self-reported 
symptoms of major psychiatric conditions conducted both at the 
assessment centres and online. We additionally summarized seven 
mental health symptoms, including anxiety, depressive symptoms, 
mania, mental distress, psychotic experience, trauma and wellbe-
ing. Quantitative measures of these mental health symptoms were 
obtained by calculating an average score of the items used to assess 
each mental health symptom. (5) Physical measures consisted of 
measures such as blood pressure, arterial stiffness and hand-grip 
strength, as well as self-declared medical conditions such as cancers, 
operations, recent pains, heart and artery diseases and other major 
illnesses. Note that these measures were included here for conveni-
ence, as some may relate to behaviour, and are at a whole-person 
level rather than the physiological measures included elsewhere. (6) 
Cognitive functions contained a series of cognitive tests conducted 
at the assessment centres, including fluid intelligence, matrix pat-
tern completion, paired associate learning, pairs matching, numeric 
memory, prospective memory, reaction time, symbol digit substitu-
tion, tower rearranging and trail making.

Note that all behaviour-related variables included were reor-
ganized to a small extent on the basis of the framework of the UK 

Biobank showcase and the summarized data provided in a previous 
study22. Except for some mental health variables derived online, all 
behaviour-related phenotypes were obtained at the assessment cen-
tre concurrently with collecting physiological assessments. For more 
details on behaviour-related and subsequent physiological pheno-
types, see Supplementary Information (pp. 3–4) and Supplementary 
Data Table 1.

Physiological phenotypes. Physiological phenotypes also contain 
six categories in three types, involving a total of 1,921 variables. First, 
neuroimaging phenotypes primarily involved two categories, includ-
ing (1) regional grey matter volumes, containing 94 brain regions 
based on the AAL2 atlas49, which were calculated in our laboratory on 
the basis of quality-controlled structural magnetic resonance imag-
ing data, and (2) white matter microstructure, including FA, mean 
diffusivity, intra-cellular volume fraction, OD and isotropic volume 
fraction measures, which were available for 27 major tracts mapped 
across the brain provided by UK Biobank. Second, blood and metabolic 
phenotypes comprised three categories: (3) blood cells, including 31 
measurements that were categorized into white blood cells, red blood 
cells and platelets; (4) blood biochemistry, including 30 biomarkers 
for liver function, renal function, endocrine, immunometabolism, 
and bone and joint; and (5) NMR metabolomics, which contains 168 
directly measured metabolic biomarkers categorized into 15 systems. 
Moreover, (6) proteomic phenotypes considered a total of 1,463 unique 
proteins, which were distributed across four protein panels, including 
369 cardiometabolic, 368 inflammation, 367 neurology and 368 oncol-
ogy, with three proteins included in all four protein panels. More details 
of proteomic data can be observed in Sun et al.50.

Statistical analysis
PheWAS. The PHESANT package in R was used to test the PheWAS asso-
ciations. In this study, 2,291 risk factors involving 2,576 associations 
(including multicategorical variables) were tested. Sex, age, the first 
ten genetic principal components, genotyping array and assessment 
centres were covariates for all association tests. Scanner positions on 
the x, y and z axes were included as additional covariates for neuroim-
aging phenotypes to control for static-field heterogeneity, and total 
intracranial volume (TIV) was included as a covariate for regional grey 
matter volumes. To directly compare the results between linear and 
logistic regression models, standardized regression coefficients (β) 
were estimated as effect sizes. Two-sided statistical tests were applied 
in all analyses. All 2,576 tested associations were considered together 
and corrected using Bonferroni correction for multiple comparisons 
(α = 0.05). Gender-stratified analyses were also conducted to explore 
sex-specific risk factors using the same procedure.

Logistic regression analysis. Logistic regression analyses were  
performed using the R-implemented ‘glm’ function on all phenotypes 
(2,291 risk factors involving 2,360 associations) for 3,558 SA cases 
and 149,976 controls to quantify significant associations within the 
case–control framework. All analyses were adjusted for sex, age and 
assessment centres, with TIV as an additional covariate for regional 
grey matter volumes and scanner positions as additional covariates for 
neuroimaging phenotypes. Bonferroni correction was applied across 
all 2,360 associations for multiple comparisons (α = 0.05).

MR. The TwosampleMR package in R was used to perform bidirec-
tional two-sample MR analyses on significant phenotypes observed in 
PheWAS and case–control analyses and SA. GWAS summary statistics 
for SA were the one used to generate the PRS, as described earlier. 
GWAS summary data for behaviour-related and blood and metabolic 
variables were acquired from the Medical Research Council Integrative 
Epidemiology Unit OpenGWAS database (https://gwas.mrcieu.ac.uk/). 
GWAS summary data for protein variables were derived from the UK 
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Biobank Pharma Proteomics Project (UKB–PPP)51. For neuroimaging, 
proteomic and summarized seven mental health variables, GWAS 
analyses were performed in the UK Biobank samples used for PheWAS. 
The GWAS was conducted using linear regression in PLINK 2.0 (https://
www.cog-genomics.org/plink/2.0/) for each phenotype. All exclusion 
criteria, genetic data quality check, ancestry control and relatedness 
removal remain the same as in the generation of the PRS. Sex, age, the 
first ten genetic principal components and assessment centres were 
covariates for all variables, and TIV was included as an additional covari-
ate for regional grey matter volumes. All continuous variables were 
scaled to a mean of 0 and a s.d. of 1 to obtain standardized estimates.

To test for causal effects of phenotypes on SA, we chose genetic 
instruments at a P threshold of 5 × 10−6. Significant SNPs of each expo-
sure were clumped with a distance of 1,000 kb and a maximum LD 
r2 of 0.01 based on European ancestry reference data from the 1000 
Genomes Project48. SNP effect data on both exposure and outcome 
were then harmonized to match the effect alleles before conducting 
the MR analyses. The threshold of 5 × 10−6 was chosen to select genetic 
instruments to ensure that the number of genome-wide significant 
hits for the examined phenotype GWAS was not less than 3 before 
harmonizing the two GWAS summary statistics, which was determined 
on the basis of the requirements of MR methods (that is, MR–Egger 
regression), similar to previous studies22,52,53. For the causal effects 
of SA on phenotypes, genetic instruments were selected from the 
GWAS summary statistics of SA at a P threshold of 5 × 10−6. These SNPs 
underwent clumping with the same parameters, resulting in 71 inde-
pendent genetic instruments. These SNPs were then identified within 
the GWAS summary statistics for each outcome, and those that were 
not present in both GWAS datasets were removed before harmonizing 
the two GWAS summary statistics. To draw reliable conclusions, we 
performed additional analyses to select genetic instruments with a P 
threshold of 5 × 10−7. If the number of suitable genetic instruments was 
less than 3 under this threshold, we excluded the phenotype from MR 
analyses. Note that our additional analyses results also showed that 
the available results obtained using the P threshold of 5 × 10−7 were 
generally consistent with those using the 5 × 10−6 (see Supplementary 
Data Tables 11 and 12 for more details).

We primarily utilized the IVW method for MR analysis, given its 
capability to combine the ratio estimates from individual genetic vari-
ants using inverse variance weights, representing a powerful method 
that has been widely utilized in similar investigations52,54. Sensitivity 
analyses were conducted to assess potential horizontal pleiotropy by 
estimating the MR–Egger intercept, and to evaluate the global het-
erogeneity of the genetic instruments using Cochran’s Q test. We also 
employed a (multiplicative) random-effects model to validate factors 
showing potential genetic instrument heterogeneity. Additionally, 
to ensure the robustness of our findings, we performed MR analyses 
using other methods, including weighted median55 and MR–Egger  
regression56.

Our analysis examined a total of 198 factors for their potential 
causal effects on SA, as well as the causal effects of SA on 190 factors 
(excluding early-life and family-history factors). We employed Bonfer-
roni correction for multiple comparisons across all examined factors 
(α = 0.05). Furthermore, to broaden our investigation, following the 
same procedure, we also conducted MR analyses of 273 risk factors that 
were significant in either PheWAS or case–control analyses on SA, as well 
as SA on 271 additional factors. This study adheres to the Strengthen-
ing the Reporting of Observational Studies in Epidemiology (STROBE) 
guideline, and a checklist is provided in Supplementary Table 3.

Machine-learning models. We implemented LightGBM57 to construct 
a model that performs the classification task to determine whether 
a participant falls into class 0 (classified as non-suicide attempt-
ers) or class 1 (classified as suicide attempters). Briefly, predictors 
for the model (that is, behaviour-related variables and demographic 

information such as age and sex) were first determined by variable 
importance ranking and sequential forward selection. The proposed 
model was then developed by the ranked predictors based on SA cases 
(n = 3,558) and controls (n = 149,976). The model was trained and evalu-
ated through a tenfold cross-validation. The performance was assessed 
using discrimination evaluated through the AUC. We built models 
for behaviour-related, NMR metabolic and proteomic phenotypes, 
respectively. We utilized Shapley additive explanations (SHAP)58 plots 
to visualize the extent to which each predictor contributed to the 
target variable. Additional details can be found in Supplementary 
Information (p. 5).

Mediation analysis. Mediation analysis was performed using the 
lavaan package in R. Four mediation models were conducted. First, the 
serial mediation model was used to investigate whether the effect of 
behaviour-related phenotypes on SA was mediated by brain structures 
and molecular biomarkers. Two paths, including (1) behaviour-related 
phenotypes → brain structure → molecular biomarkers → SA and (2) 
behaviour-related phenotypes → molecular biomarkers → brain struc-
ture → SA were conducted. In addition, models as (3) behaviour-related 
phenotypes → molecular biomarkers → SA and (4) behaviour-related 
phenotypes → brain structure → SA were conducted to determine 
whether the effect could be mediated individually by a category. 
The four mediation models were applied to each behaviour-related  
factor that showed a causal effect on SA survived Bonferroni correction. 
Brain structure represented the mean values of grey matter volumes 
significantly associated with SA-PRS survived Bonferroni correction 
in PheWAS. Molecular biomarkers were the mean values of blood cells 
(or blood biochemistry, or NMR metabolites, or proteins) significantly 
associated with SA-PRS survived Bonferroni correction in PheWAS. Sex, 
age and assessment centres were covariates for all models. TIV was an 
additional covariate for models containing brain structure. We used 
a bootstrapping approach to establish generalizability across sites, 
address the unequal sample size of the groups, and correct for multiple 
comparisons. Total, direct and indirect associations were estimated by 
the 10,000-iteration non-parametric bootstrap approach.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in the present study are available from UK Biobank with 
restrictions applied. Data were used under licence and are thus not 
publicly available. Researchers can apply for access to the UK Biobank 
data via the Access Management System (https://www.ukbiobank.
ac.uk/enable-your-research/apply-for-access). Publicly available UK 
Biobank-based summary statistics for the GWAS of behavoural-related 
risk factors can be obtained from the MRC IEU OpenGWAS data-
base (https://gwas.mrcieu.ac.uk/). GWAS summary data for protein  
variables can be downloaded from the UK Biobank Pharma Proteomics 
Project (https://www.synapse.org/#!Synapse:syn51364943/). GWAS 
summary data for SA can be applied via the PGC SUI Data Access  
Portal (https://pgc.unc.edu/for-researchers/data-access-committee/
data-access-portal/). European ancestry reference data from the 1000 
Genomes Project can be found via https://github.com/getian107/
PRScsx?tab=readme-ov-file.

Code availability
For the analyses conducted in R (version 4.2.3), the PHESANT package 
(v1.1) was used to perform PheWAS, TwoSampleMR (v0.5.6) to perform 
MR analysis, base ‘glm’ function to perform logistic regression analysis, 
and lavaan (v0.6-16) to perform mediation analysis. PLINK 2.0 were 
used to calculate PRS and perform GWAS analysis. PRS-CSx tool (v1.1.0) 
based on Python 3.9 was used to estimate PRS score using the PRS-CS 
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method. LightGBM library (v3.3.2) based on Python 3.9 was used to 
develop the machine learning models. The primary code used in this 
study has been made publicly accessible through the GitHub repository 
(https://github.com/beimagic/Suicide_Risk_factors).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was involved in data collection (data used is all directly available from UK Biobank, as described in detail in the paper).

Data analysis R version 4.2.3 packages: 
PHESANT package (v1.1) was used to perform the phenome-wide association study (PheWAS);  
TwoSampleMR (v0.5.6) was used to perform Mendelian Randomization analysis; 
R-implemented base ‘glm’ function to perform logistic regression analysis; 
lavaan (v0.6-16) was used to perform Mediation analysis; 
PRS-CSx tool (v1.1.0) based on Python 3.9 was used to estimate PRS score; 
PLINK 2.0  was used to calculate PRS and perform GWAS analysis; 
Python 3.9 with LightGBM library (v3.3.2) was used to develop the machine learning models; 
The primary code used in this study has been made publicly accessible through the GitHub repository (https://github.com/beimagic/
Suicide_Risk_factors).
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data used in the present study are available from UK Biobank with restrictions applied. Data were used under license and are thus not publicly available. 
Researchers can apply for access to the UK Biobank data via the Access Management System (https://www.ukbiobank.ac.uk/enable-your- research/apply-for-
access). Publicly available UKB-based summary statistics for the GWAS of risk factors can be obtained from the MRC IEU OpenGWAS database (https://gwas. 
mrcieu.ac.uk/). GWAS summary data for protein variables can be downloaded from the UK Biobank Pharma Proteomics Project (https://www.synapse.org/#!
Synapse:syn51364943/). GWAS summary data for suicide attempts can be applied via the PGC SUI Data Access Portal (https://pgc.unc.edu/for-researchers/data-
access-committee/data-access-portal/). European ancestry reference data from the 1000 Genomes Project can be found via https://github.com/getian107/PRScsx?
tab=readme-ov-file.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The study included both male and female participants from the UK biobank. Sex (Field ID 31) in the UK Biobank was 
determined based on self-reporting data via a questionnaire. Summary statistics on sex distributions were reported in  
Supplementary Table 2.  All statistic models were adjusted for sex. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

All 334,706 UK Biobank participants included in the calculation of PRS and PheWAS are white ethnicity group. Among the 
validation dataset comprising 3,558 suicide attempt cases and 149,976 controls from the UK Biobank, over 95.68% of 
participants in both groups are white ethnicity group. Therefore, our statistical analyses did not incorporate race as a 
covariate.

Population characteristics Of the 334,706 individuals included in the calculation of PRS for suicide attempts and the subsequent PheWAS, 53.59% were 
female, and the mean (s.d.) age was 56.91 (7.99) years. Among the dataset comprising 3,558 SA cases and 149,976 controls,  
56.28% were female, and the mean (s.d.) age was 56.03 (7.72) years. Further demographic characteristics are shown in 
Supplementary Table 2. All statistical analyses were adjusted for sex and age. For comprehensive statistical insights, Table 1 
presents details of the sample sizes used for each risk factor category in the PheWAS and logistic regression analyses.

Recruitment The UK Biobank is a prospective, population-based cohort that recruited more than 500,000 participants aged 37 - 73 years 
who attended 1 of 22 assessment centers across the United Kingdom between 2006 and 2010. The assessment visits 
comprised interviews and questionnaires covering lifestyles and health conditions, physical measures, biological samples, 
imaging, and genotype data.

Ethics oversight UK Biobank has received ethical approval from the North West Multi-centre Research Ethics Committee (MREC, https:// 
www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics), and informed consent through electronic signature 
was obtained from study participants. This study utilized the UK Biobank Resource under application number 19542.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were not predetermined using statistical methods. We utilized the entire available dataset from the UK Biobank. After rigorous 
quality control of genotype data, 334,706 unrelated individuals of British ancestry were included in the calculation of PRS for suicide attempts 
and subsequent PheWAS. Additionally, a total of 3,558 suicide attempters and 149,976 non-suicide attempters were included based on self-
reported suicide behavior. Table 1 lists the sample sizes used in the PheWAS and logistic regression analyses for each risk factor category.

Data exclusions For the PRS calculation, we excluded single-nucleotide polymorphisms (SNPs) with call rates < 95%, minor allele frequency < 0.5%, and 
deviation from Hardy-Weinberg equilibrium with P < 1 x 10-6. Participants with less than 5% missing rates, not outliers in heterozygosity, had 
no sex chromosome aneuploidy, of British ancestry, and had no more than 10 putative third-degree relatives in the kinship table were 
selected to calculate the PRS for suicide attempts. Note that, to minimize sample overlap between the PheWAS and the case-control analyses, 
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individuals with suicide attempts (n = 2,432) were excluded from the subsequent PheWAS calculation, resulting in a total of 334,706 samples 
in identifying risk factors associated with genetic predisposition to suicide attempts.

Replication All available data were used to maximize the statistical power of the analysis; therefore, we did not repeat the analysis.

Randomization All statistical models were adjusted for age, sex, and assessment centers in the current study. Association analyses involving genetic data were 
also adjusted for the first ten genetic principal components and genotyping array. Association analyses involving gray matter volumes were 
also adjusted for total intracranial volume .

Blinding Blinding was not applicable to this study as this study is observational.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type Structural MRI and diffusion MRI

Design specifications The UK Biobank designed the imaging acquisition protocols including 6 modalities, covering structural, diffusion and 
functional imaging. The collection order is T1-weighted structural image, resting-state functional MRI, task functional 
MRI, T2-weighted FLAIR structural image, diffusion MRI and susceptibility-weighted imaging. The T1-weighted structural 
image was acquired using straight sagittal orientation for 5 minutes. The diffusion MRI data was acquired for 7 minutes 
(including 36 seconds phase-encoding reversed data).

Behavioral performance measures We used the T1-weighted structural imaging and diffusion imaging, which do not require task performance.

Acquisition
Imaging type(s) T1-weighted structural imaging

Field strength 3T

Sequence & imaging parameters The EPI-based acquisitions utilize simultaneous multi-slice (multiband) acceleration. UK Biobank uses pulse sequences 
and reconstruction code from the Center for Magnetic Resonance Research (CMRR), University of Minnesota https://
www.cmrr.umn.edu/multiband. The resolution is 1x1x1 mm and the field of view is 208x256x256 matrix. Straight 
sagittal orientation is used. TR and TE are 2000ms and 2.01ms respectively. The flip angle is 8 deg. Detailed sequence 
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and imaging parameters are openly available here: https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/ 
brain_mri.pdf

Area of acquisition Whole brain

Diffusion MRI Used Not used

Parameters Diffusion MRI data in the UK Biobank is obtained with two b-values (b = 1,000 and 2,000 s/mm2) at a spatial resolution of 2 mm using 
a multiband acceleration factor of 3, which allows for the acquisition of three slices simultaneously. For the two diffusion-weighted 
shells, 50 distinct diffusion-encoding directions were acquired (and all 100 directions are distinct). The diffusion preparation is a 
standard ("monopolar") Stejskal-Tanner pulse sequence. This enables higher SNR due to a shorter echo time (TE=92ms) than a twice-
refocused ("bipolar") sequence. This improvement comes at the expense of stronger eddy current distortions, which are removed in 
the image processing pipeline.

Preprocessing

Preprocessing software The T1-weighted structural imaging data were preprocessed with the Statistical Parametric Mapping software version 12 
(https://www.fil.ion.ucl.ac.uk/spm/) using the CAT12 toolbox (https://neuro-jena.github.io/cat/) with default settings. The 
preprocessing involved high-dimensional spatial normalization with an integrated Dartel template in Montreal Neurological 
Institute (MNI) space, followed by nonlinear modulations and correction for each individual's head size. Following these 
procedures, gray matter images (voxel size: 1.5×1.5×1.5 mm3) were obtained for all participants. The AAL2 atlas with 94 
cortical brain regions was used to extract structural imaging-derived phenotypes referred to as regional gray matter volumes. 
 
The diffusion imaging data is corrected for eddy currents and head motion, and has outlier slices (individual slices in the 4D 
data) corrected,using the Eddy tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). GDC is then applied, resulting in the 4D output 
filed. This is then fed into two complementary analyses, one based on tract-skeleton processing, and the other based on a 
richer modelling of within-voxel tract structure, followed by probabilistic tractography analysis (BEDPOSTx/PROBTRACKx). 
Maps for fractional anisotropy (FA) and mean diffusivity (MD) were generated, and FA maps were used to generate tract 
masks, using probabilistic tractography analysis by AutoPtx package from FSL. Twenty-seven tracts were generated (12 
bilateral and 3 unilateral tracts). Weighted mean FA and MD were then calculated for each tract. Neurite Orientation 
Dispersion and Density Imaging measures were also generated as supplementary measures, which include intra-cellular 
volume fraction (ICVF), isotropic or free water volume fraction (ISOVF), and orientation dispersion (OD).

Normalization The T1-weighted images and diffusion images were nonlinearly normalized to MNI152 space by CAT12 and FSL-based 
warping, respectively.

Normalization template The T1-weighted images were normalized to the Dartel template in MNI space and the diffusion images were normalized to 
the FMRIB58_FA MNI template.

Noise and artifact removal The diffusion data was corrected for eddy currents and head motion, and has outlier-slices (individual slices in the 4D data) 
correction, using the Eddy tool in FSL.

Volume censoring No volume censoring was applied for the T1-weighted images and diffusion images.

Statistical modeling & inference

Model type and settings (1) PheWAS: The PHESANT package in R was used to test the PheWAS associations. In this study, 2,291 risk factors involving 
2,576 associations (including multicategorical variables) were tested. Sex, age, the first 10 genetic principal components, 
genotyping array, assessment centres, scanner positions on the x, y, and z axes were covariates for all neuroimaging 
phenotypes, and total intracranial volume was included as a additional covariate for regional gray matter volumes. 
(2) Logistic regression analysis: Logistic regression analyses were performed using the R-implemented ‘glm’ function on all 
neuroimaging phenotypes for SA cases and controls to quantify significant associations within the case-control framework. 
These analyses were adjusted for sex, age, and assessment centers, with total intracranial volume as an additional covariate 
for regional gray matter volumes.

Effect(s) tested Standardized regression coefficients (β) were estimated as effect sizes. Two-sided statistical tests were applied in all analyses.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Voxel-wise association

Correction Bonferroni correction

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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