A theory of hippocampal function: new developments

Progress in Neurobiology (2024) doi: 10.1016/j.pneurobio.2024.102636

Supplementary Material

Edmund T. Rolls^{1, 2*} and Alessandro Treves³

1. Oxford Centre for Computational Neuroscience, Oxford, UK

2. Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

3. SISSA - Cognitive Neuroscience, Trieste 34136, Italy

*Corresponding author information: Professor Edmund T. Rolls, Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK. Email: <u>Edmund.Rolls@oxcns.org</u> URL: <u>https://www.oxcns.org</u> https://orcid.org/0000-0003-3025-1292 Section 1 of this Supplementary Material including Fig. S1 and Table S1 contains background information about the Human Connectome project Multimodal Parcellation utilized in some of the investigations described in the main text and in Figs. 7-9.

Section 2 of this Supplementary Material including Fig. S2 provides a Glossary of some of the terms and concepts described in the main text.

1. The Human Connectome Project Multimodal Parcellation (HCP-MMP) with a modified ordering of its regions

The atlas used to define cortical regions in many of the human connectivity studies described in the paper (Ma *et al.*, 2022; Rolls, 2022; Rolls *et al.*, 2022a; Rolls *et al.*, 2022b; Rolls, 2023a, b; Rolls *et al.*, 2023a, b; Rolls *et al.*, 2023e, d, c; Rolls *et al.*, 2023f; Rolls *et al.*, 2023h; Rolls, 2024; Rolls *et al.*, 2024a; Rolls *et al.*, 2024b; Rolls *et al.*, 2024c) is the HCP-MMP surface-based atlas (Glasser *et al.*, 2016). To help readers, Table S1 shows the cortical regions identified in this parcellation with the ordering used in the extended version of the atlas, HCPex (Huang *et al.*, 2022), and the cortical regions in this atlas are shown in Fig. S1.

An introduction to the HCP-MMP atlas is provided by Rolls (2023a), and detailed information about the regions in the HCP-MMP atlas is available in the Supplementary Material File NIHMS68870-supplement-Neuroanatomical_Supplementary_Results.pdf provided by Glasser et al (2016). In that Supplementary Material file, a grouping of the regions is suggested based on geographic proximity and functional similarities, and this grouping is shown in the column labelled CortexID in Table S1. That has led to a different ordering of the regions, which we show in Table S1, with the original regionIDs from the HCP atlas shown in the column headed 'regionID'. This reordered version of the HCP-MMP atlas is described by Dr Dianne Patterson of the University of Arizona at https://neuroimaging-core_docs.readthedocs.io/en/latest/pages/atlases.html, where the following supporting files used to help generate Table S1 are available: HCP-MMP_UniqueRegionList.csv and Glasser_2016_Table.xlsx. We made file HCPMMP_CortexID_Ordering.xlsx from this, and this is available from the present authors. The connectivity matrices shown in the present paper used the ordering shown in Table S1, which is that used in the volumetric and extended form of this atlas (Huang *et al.*, 2022).

Table S1. Regions defined in the modified Human Connectome Project atlas (Glasser *et al.*, 2016). L=left hemisphere, R=right. The column 'Reordered region ID' is that used in Figs. 1-5, and is a reordering of that based on suggestions in the Supplementary Information of Glasser et al (2016). In that Supplementary Information of that paper, the 360 regions are grouped based on geographic proximity and functional similarities, which was reorganized and provided by Dr Dianne Patterson of the University of Arizona at <u>https://neuroimaging-core-</u>

<u>docs.readthedocs.io/en/latest/pages/atlases.html</u> with the HCP-MMP_UniqueRegionList.csv and is shown in the column labelled CortexID in Table S1. The volumes are in mm³. This modified atlas with the reordering is described elsewhere (Huang *et al.*, 2022).

Reordered ID (L, R)	Region	RegionLongName	Cortical Division	Cortex ID	Original ID	Voxel numbers (1mm ³) (L,R)
1,181	V1	Primary_Visual_Cortex	Primary_Visual	1	1	13812, 13406
2, 182	V2	Second_Visual_Area	Early_Visual	2	4	9515, 9420
3, 183	V3	Third_Visual_Area	Early_Visual	2	5	7106, 7481
4, 184	V4	Fourth_Visual_Area	Early_Visual	2	6	4782, 4537
5, 185	IPS1	IntraParietal_Sulcus_Area_1	Dorsal_Stream_Visual	3	17	1751, 1750
6, 186	V3A	Area_V3A	Dorsal_Stream_Visual	3	13	2191, 2212
7, 187	V3B	Area_V3B	Dorsal_Stream_Visual	3	19	639, 731
8, 188	V6	Sixth_Visual_Area	Dorsal_Stream_Visual	3	3	1402, 1559
9, 189	V6A	Area_V6A	Dorsal_Stream_Visual	3	152	904, 734
10, 190	V7	Seventh_Visual_Area	Dorsal_Stream_Visual	3	16	1005, 1041
11, 191	FFC	Fusiform_Face_Complex	Ventral_Stream_Visual	4	18	3848, 4402
12, 192	PIT	Posterior_InferoTemporal_complex	Ventral_Stream_Visual	4	22	1392, 1386
13, 193	V8	Eighth_Visual_Area	Ventral_Stream_Visual	4	7	1361, 1175
14, 194	VMV1	VentroMedial_Visual_Area_1	Ventral_Stream_Visual	4	153	939, 1219
15, 195	VMV2	VentroMedial_Visual_Area_2	Ventral_Stream_Visual	4	160	639, 923
16, 196	VMV3	VentroMedial_Visual_Area_3	Ventral_Stream_Visual	4	154	941, 1242
17, 197	VVC	Ventral_Visual_Complex	Ventral_Stream_Visual	4	163	2487, 2753
18, 198	FST	Area_FST	MT+_Complex	5	157	1324, 1683
19, 199	LO1	Area_Lateral_Occipital_1	MT+_Complex	5	20	619, 909
20, 200	LO2	Area_Lateral_Occipital_2	MT+_Complex	5	21	1179, 1062
21, 201	LO3	Area_Lateral_Occipital_3	MT+_Complex	5	159	438, 915
22, 202	MST	Medial_Superior_Temporal_Area	MT+_Complex	5	2	794, 1036
23, 203	MT	Middle_Temporal_Area	MT+_Complex	5	23	620, 1005
24, 204	PH	Area_PH	MT+_Complex	5	138	3453, 3205
25, 205	V3CD	Area_V3CD	MT+_Complex	5	158	876, 1222
26, 206	V4t	Area_V4t	MT+_Complex	5	156	1037, 1249
27, 207	1	Area_1	SomaSens_Motor	6	51	6590, 5925
28, 208	2	Area_2	SomaSens_Motor	6	52	4278, 4727
29, 209	3a	Area_3a	SomaSens_Motor	6	53	2247, 2286
30, 210	3b	Primary_Sensory_Cortex	SomaSens_Motor	6	9	5451, 4350
31, 211	4	Primary_Motor_Cortex	SomaSens_Motor	6	8	10776, 10254
32, 212	23c	Area_23c	ParaCentral_MidCing	7	38	2259, 2498
33, 213	24dd	Dorsal_Area_24d	ParaCentral_MidCing	7	40	2665, 2820
34, 214	24dv	Ventral_Area_24d	ParaCentral_MidCing	7	41	1076, 1349
35, 215	5L	Area_5L	ParaCentral_MidCing	7	39	2249, 2327
36, 216	5m	Area_5m	ParaCentral_MidCing	7	36	1483, 2079

37, 217	5mv	Area_5m_ventral	ParaCentral_MidCing	7	37	1651, 1996
38, 218	6ma	Area_6m_anterior	ParaCentral_MidCing	7	44	3941, 4251
39, 219	6mp	Area_6mp	ParaCentral_MidCing	7	55	3701, 3105
40, 220	SCEF	Supplementary_and_Cingulate_Eye_ Field	ParaCentral_MidCing	7	43	3500, 3371
41, 221	55b	Area_55b	Premotor	8	12	2422, 1537
42, 222	6a	Area_6_anterior	Premotor	8	96	4233, 3752
43, 223	6d	Dorsal_area_6	Premotor	8	54	2916, 2909
44, 224	6r	Rostral_Area_6	Premotor	8	78	3029, 3981
45, 225	6v	Ventral_Area_6	Premotor	8	56	2075, 2516
46, 226	FEF	Frontal_Eye_Fields	Premotor	8	10	1787, 1889
47, 227	PEF	Premotor_Eye_Field	Premotor	8	11	1006, 1258
48, 228	43	Area_43	Posterior_Opercular	9	99	1889, 1678
49, 229	FOP1	Frontal_Opercular_Area_1	Posterior_Opercular	9	113	879, 932
50, 230	OP1	Area_OP1-SII	Posterior_Opercular	9	101	1275, 1072
51, 231	OP2-3	Area_OP2-3-VS	Posterior_Opercular	9	102	943, 792
52, 232	OP4	Area OP4-PV	Posterior Opercular	9	100	2332, 2409
53, 233	52	Area 52	Early Auditory	10	103	725, 580
54, 234	Al	Primary Auditory Cortex	Early Auditory	10	24	1023, 796
55, 235	LBelt	Lateral Belt Complex	Early Auditory	10	174	820, 901
56, 236	MBelt	Medial Belt Complex	Early Auditory	10	173	1242, 1236
57,237	PBelt	ParaBelt Complex	Early Auditory	10	124	1719, 1439
58,238	PFcm	Area PFcm	Early Auditory	10	105	1486, 1485
59, 239	RI	RetroInsular Cortex	Early Auditory	10	104	1149, 1334
60, 240	A4	Auditory 4 Complex	Auditory Association	11	175	3514, 3610
61, 241	A5	Auditory 5 Complex	Auditory Association	11	125	3346, 3881
62, 242	STGa	Area STGa	Auditory Association	11	123	2509, 2187
63, 243	STSda	Area STSd anterior	Auditory Association	11	128	1944, 2389
64, 244	STSdp	Area STSd posterior	Auditory Association	11	129	1994, 2605
65, 245	STSva	Area STSv anterior	Auditory Association	11	176	1694, 1900
66,246	STSvn	Area STSv posterior	Auditory Association	11	130	2898 2515
67 247	TA2	Area TA2	Auditory Association	11	107	1518 1726
68 248	AAIC	Anterior Agranular Insula Complex	Insula FrontalOperc	12	112	1859 1691
69 249	AVI	Anterior Ventral Insular Area	Insula_FrontalOperc	12	112	1446 1792
70, 250	EOP2	Frontal Opercular Area 2	Insula_FrontalOperc	12	115	750, 720
71, 251	FOP2	Frontal Operaular Area 2	Insula_FrontalOpere	12	113	754 614
71,231	FOP4	Frontal Operaular Area 4	Insula_FrontalOperc	12	109	2522 1678
72, 252	FOP5	Area Frontel Opercular 5	Insula_FrontalOpere	12	160	1207, 1265
73,235	FOP5	Area_Frontal_Opercular_5	Insula_FrontalOperc	12	169	841 1077
74, 234	Ig	Middle Lessler Area	Insula_FrontalOperc	12	100	341, 1077
75,255	NII DI	Middle_insular_Area	Insula_FrontalOperc	12	109	2102, 1960
76,256	PI	Para-Insular_Area	Insula_FrontalOperc	12	1/8	1033, 1058
77,257	Pir	Piritorm_Cortex	Insula_FrontalOperc	12	110	2287, 1856
78,258	Poll	Area_Posterior_Insular_1	Insula_FrontalOperc	12	167	1811, 1835
79,259	Pol2	Posterior_Insular_Area_2	Insula_FrontalOperc	12	106	2/4/, 2675
80, 260	H	Hippocampus	Medial_Temporal	13	120	4283, 3626
81, 261	PreS	PreSubiculum	Medial_Temporal	13	119	1817, 1558
82, 262	EC	Entorhinal_Cortex	Medial_Temporal	13	118	2127, 2110
83, 263	PeEc	Perirhinal_Ectorhinal_Cortex	Medial_Temporal	13	122	4826, 4755

	84, 264	TF	Area_TF	Medial_Temporal	13	135	3986, 4752
	85, 265	PHA1	ParaHippocampal_Area_1	Medial_Temporal	13	126	1281, 1168
	86, 266	PHA2	ParaHippocampal_Area_2	Medial_Temporal	13	155	783, 771
	87, 267	PHA3	ParaHippocampal_Area_3	Medial_Temporal	13	127	2023, 1122
	88, 268	PHT	Area_PHT	Lateral_Temporal	14	137	4182, 3410
	89, 269	TEla	Area_TE1_anterior	Lateral_Temporal	14	132	5227, 4180
	90, 270	TE1m	Area_TE1_Middle	Lateral_Temporal	14	177	3339, 3429
	91, 271	TE1p	Area_TE1_posterior	Lateral_Temporal	14	133	7116, 6010
	92, 272	TE2a	Area_TE2_anterior	Lateral_Temporal	14	134	5691, 5753
	93, 273	TE2p	Area_TE2_posterior	Lateral_Temporal	14	136	4115, 3040
	94, 274	TGd	Area_TG_dorsal	Lateral_Temporal	14	131	10192, 10269
	95, 275	TGv	Area_TG_Ventral	Lateral_Temporal	14	172	3694, 4515
	96, 276	PSL	PeriSylvian_Language_Area	ТРО	15	25	2154, 2759
	97, 277	STV	Superior_Temporal_Visual_Area	ТРО	15	28	2322, 2294
	98, 278	TPOJ1	Area_TemporoParietoOccipital_Juncti	ТРО	15	139	2102, 3938
-	99, 279	TPOJ2	Area_TemporoParietoOccipital_Juncti on 2	ТРО	15	140	1930, 2068
	100, 280	TPOJ3	Area_TemporoParietoOccipital_Juncti	ТРО	15	141	1290, 1277
	101, 281	7AL	Lateral_Area_7A	Superior_Parietal	16	42	2134, 2030
	102, 282	7Am	Medial_Area_7A	Superior_Parietal	16	45	2995, 2379
	103, 283	7PC	Area_7PC	Superior_Parietal	16	47	3151, 3415
	104, 284	7PL	Lateral_Area_7P	Superior_Parietal	16	46	1695, 1363
	105, 285	7Pm	Medial_Area_7P	Superior_Parietal	16	29	1601, 1308
	106, 286	AIP	Anterior_IntraParietal_Area	Superior_Parietal	16	117	1999, 2542
	107, 287	LIPd	Area_Lateral_IntraParietal_dorsal	Superior_Parietal	16	95	1008, 869
	108, 288	LIPv	Area_Lateral_IntraParietal_ventral	Superior_Parietal	16	48	1681, 1783
	109, 289	MIP	Medial_IntraParietal_Area	Superior_Parietal	16	50	1872, 2403
	110, 290	VIP	Ventral_IntraParietal_Complex	Superior_Parietal	16	49	1890, 1577
	111, 291	IP0	Area_IntraParietal_0	Inferior_Parietal	17	146	1203, 1239
	112, 292	IP1	Area_IntraParietal_1	Inferior_Parietal	17	145	1692, 1632
	113, 293	IP2	Area_IntraParietal_2	Inferior_Parietal	17	144	2102, 1861
	114, 294	PF	Area_PF_Complex	Inferior_Parietal	17	148	5457, 5251
	115, 295	PFm	Area_PFm_Complex	Inferior_Parietal	17	149	8220, 8141
	116, 296	PFop	Area_PF_Opercular	Inferior_Parietal	17	147	1797, 1783
	117, 297	PFt	Area_PFt	Inferior_Parietal	17	116	1983, 2039
	118, 298	PGi	Area_PGi	Inferior_Parietal	17	150	4791, 4970
	119, 299	PGp	Area_PGp	Inferior_Parietal	17	143	2501, 3740
	120, 300	PGs	Area_PGs	Inferior_Parietal	17	151	4552, 3366
	121, 301	23d	Area_23d	Posterior_Cingulate	18	32	1261, 1513
	122, 302	31a	Area_31a	Posterior_Cingulate	18	162	1260, 1116
	123, 303	31pd	Area_31pd	Posterior_Cingulate	18	161	1428, 864
	124, 304	31pv	Area_31p_ventral	Posterior_Cingulate	18	35	950, 1022
	125, 305	7m	Area_7m	Posterior_Cingulate	18	30	2128, 2067
	126, 306	d23ab	Area_dorsal_23_a+b	Posterior_Cingulate	18	34	1607, 1106
	127, 307	DVT	Dorsal_Transitional_Visual_Area	Posterior_Cingulate	18	142	1806, 2176
	128, 308	PCV	PreCuneus_Visual_Area	Posterior_Cingulate	18	27	2245, 2416
	129, 309	POS1	Parieto-Occipital_Sulcus_Area_1	Posterior_Cingulate	18	31	2531, 2727
-							

130, 310	POS2	Parieto-Occipital_Sulcus_Area_2	Posterior_Cingulate	18	15	3261, 3093
131, 311	ProS	ProStriate_Area	Posterior_Cingulate	18	121	1222, 1055
132, 312	RSC	RetroSplenial_Complex	Posterior_Cingulate	18	14	2830, 3067
133, 313	v23ab	Area_ventral_23_a+b	Posterior_Cingulate	18	33	916, 1089
134, 314	10r	Area_10r	AntCing_MedPFC	19	65	1589, 1053
135, 315	10v	Area_10v	AntCing_MedPFC	19	88	3906, 2667
136, 316	25	Area_25	AntCing_MedPFC	19	164	1911, 2135
137, 317	33pr	Area_33_prime	AntCing_MedPFC	19	58	1354, 1316
138, 318	8BM	Area_8BM	AntCing_MedPFC	19	63	3122, 3436
139, 319	9m	Area_9_Middle	AntCing_MedPFC	19	69	6338, 5881
140, 320	a24	Area_a24	AntCing_MedPFC	19	61	2085, 2152
141, 321	a24pr	Anterior_24_prime	AntCing_MedPFC	19	59	1095, 1474
142, 322	a32pr	Area_anterior_32_prime	AntCing_MedPFC	19	179	1759, 1118
143, 323	d32	Area_dorsal_32	AntCing_MedPFC	19	62	2228, 2374
144, 324	p24	Area_posterior_24	AntCing_MedPFC	19	180	2394, 2442
145, 325	p24pr	Area_Posterior_24_prime	AntCing_MedPFC	19	57	1422, 1724
146, 326	p32	Area_p32	AntCing_MedPFC	19	64	1180, 1765
147, 327	p32pr	Area_p32_prime	AntCing_MedPFC	19	60	1569, 1305
148, 328	pOFC	Posterior_OFC_Complex	AntCing_MedPFC	19	166	2486, 2836
149, 329	s32	Area_s32	AntCing_MedPFC	19	165	604, 1015
150, 330	10d	Area_10d	OrbPolaFrontal	20	72	3644, 3096
151, 331	10pp	Polar_10p	OrbPolaFrontal	20	90	1997, 2487
152, 332	111	Area_111	OrbPolaFrontal	20	91	3531, 3793
153, 333	131	Area_131	OrbPolaFrontal	20	92	2429, 1757
154, 334	47m	Area_47m	OrbPolaFrontal	20	66	799, 781
155, 335	47s	Area_47s	OrbPolaFrontal	20	94	2795, 3080
156, 336	a10p	Area_anterior_10p	OrbPolaFrontal	20	89	1964, 1748
157, 337	OFC	Orbital_Frontal_Complex	OrbPolaFrontal	20	93	4560, 5232
158, 338	p10p	Area_posterior_10p	OrbPolaFrontal	20	170	2116, 2365
159, 339	44	Area_44	Inferior_Frontal	21	74	2435, 2589
160, 340	45	Area_45	Inferior_Frontal	21	75	3762, 2962
161, 341	471	Area_47l_(47_lateral)	Inferior_Frontal	21	76	2527, 2592
162, 342	a47r	Area_anterior_47r	Inferior_Frontal	21	77	4167, 3763
163, 343	IFJa	Area_IFJa	Inferior_Frontal	21	79	1513, 1405
164, 344	IFJp	Area_IFJp	Inferior_Frontal	21	80	960, 740
165, 345	IFSa	Area_IFSa	Inferior_Frontal	21	82	2057, 2641
166, 346	IFSp	Area_IFSp	Inferior_Frontal	21	81	1589, 1730
167, 347	p47r	Area_posterior_47r	Inferior_Frontal	21	171	2133, 1761
168, 348	46	Area_46	Dorsolateral_Prefrontal	22	84	4863, 4394
169, 349	8Ad	Area_8Ad	Dorsolateral_Prefrontal	22	68	3386, 3492
170, 350	8Av	Area_8Av	Dorsolateral_Prefrontal	22	67	4807, 5902
171, 351	8BL	Area_8B_Lateral	Dorsolateral_Prefrontal	22	70	3377, 4078
172, 352	8C	Area_8C	Dorsolateral_Prefrontal	22	73	4085, 3134
173, 353	9-46d	Area_9-46d	Dorsolateral_Prefrontal	22	86	4534, 4666
174, 354	9a	Area_9_anterior	Dorsolateral_Prefrontal	22	87	3706, 3048
175, 355	9p	Area_9_Posterior	Dorsolateral_Prefrontal	22	71	3426, 2488
176, 356	a9-46v	Area_anterior_9-46v	Dorsolateral_Prefrontal	22	85	3314, 2628

155.055	:6.0				07	15(1.0410
177, 357	16-8	Inferior_6-8_Transitional_Area	Dorsolateral_Prefrontal	22	97	1764, 2418
178, 358	p9-46v	Area_posterior_9-46v	Dorsolateral_Prefrontal	22	83	2871, 4635
179, 359	s6-8	Superior_6-8_Transitional_Area	Dorsolateral_Prefrontal	22	98	1336, 2132
180, 360	SFL	Superior_Frontal_Language_Area	Dorsolateral_Prefrontal	22	26	3873, 3055

Column 1 (Reordered ID) shows the order in HCPex based on the HCP-MMP1_UniqueRegionList.csv, as described in the Methods, of the 360 cortical regions originally defined by Glasser et al (2016). The names of the cortical divisions shown in column 4 come from the same .csv file. The sixth column shows the original order used by Glasser et al (2016). Abbreviations: L=left hemisphere, R=right. MT+_Complex_and_Neighboring_Visual_Areas; SomaSens_Motor, Somatosensory_and_Motor; ParaCentral_MidCing, Paracentral_Lobular_and_Mid_Cingulate; Insula_FrontalOperc, Insular_and_Frontal_Opercular; TPO, Temporo-Parieto-Occipital_Junction; AntCing_MedPFC, Anterior_Cingulate_and_Medial_Prefrontal; OrbPolaFrontal, Orbital_and_Polar_Frontal.

Fig. S1-1. Example coronal slices showing regions defined in the HCPex atlas and added subcortical regions (Huang *et al.*, 2022). The abbreviations are as in Table S1. The y values for the coronal slices are in MNI coordinates.

Fig. S1-2. Example coronal slices showing regions defined in the HCPex atlas and added subcortical regions (Huang *et al.*, 2022). The abbreviations are as in Table S1. The y values for the coronal slices are in MNI coordinates.

Fig. S1-3. Example coronal slices showing regions defined in the HCPex atlas and added subcortical regions (Huang *et al.*, 2022). The abbreviations are as in Table S1. The y values for the coronal slices are in MNI coordinates.

Fig. S1-4. Example coronal slices showing regions defined in the HCPex atlas and added subcortical regions (Huang *et al.*, 2022). The abbreviations are as in Table S1. The y values for the coronal slices are in MNI coordinates.

HCP-MMP human brain parcellation: medial view

Fig. S1-5. Anatomical regions of the human visual and other cortical regions. Regions are shown as defined in the HCP-MMP atlas (Glasser *et al.*, 2016), and in its extended version HCPex (Huang *et al.*, 2022). The regions are shown on images of the human brain without the sulci expanded to show which cortical HCP-MMP regions are normally visible, for comparison with Figs. 6-10. (The ICBM153 MNI T1 image was used to prepare this figure.) Abbreviations are provided in Table S1.

HCP-MMP1 human brain parcellation: medial view

Fig. S1-6. Regions in the Human Connectome Project Multimodal Parcellation atlas (HCP-MMP) (Glasser *et al.*, 2016) and its extended version HCPex (Huang *et al.*, 2022) to show the cortical regions. The regions are shown on images of the human brain with the sulci expanded sufficiently to allow the regions within the sulci to be shown. Abbreviations are provided in Table S1. For comparison, a version of this diagram without the sulci expanded is provided in Fig. S1-5. (HCPBrainMaster4bLC.eps)

2. Glossary

Auto-association or attractor network

An auto-association or attractor network has recurrent associatively modifiable excitatory synapses (Fig. S2c). It can maintain neuronal activity in a *short-term memory* state, and given an incomplete retrieval cue, will be attracted into one of the states in which it has been trained, with one of the trained populations of neurons active. It thus implements *completion* of a complete memory from a partial retrieval cue. When in one of its attractor states, it is stable, and this is described as a low energy state in an energy landscape, following Hopfield (1982). This type of network provides a model for CA3, and for local neocortex circuits that have a high density of local recurrent collaterals within a diameter of 1-3 mm (Rolls, 2023a). Details of the operation of autoassociation / attractor networks can be found in Appendix B3 of *Brain Computations and Connectivity* (Rolls, 2023a) (Open Access at www.oxcns.org), where Matlab demonstration code is provided that can also be run with the free software Octave.

Fig. S2. Three network architectures that use local learning rules: (a) pattern association network introduced with a single output neuron; (b) pattern association network; (c) autoassociation network; (d) competitive network. Cortical pyramidal cell bodies are represented by triangular shapes, and the dendrites of each cell are shown above, with the axons shown below. The negative feedback inhibitory neurons are not shown. The synaptic weights w_{ij} are associatively modifiable based on the presynaptic and postsynaptic firing rates, and the information to modify each synapse is thus available locally at the synapse, which helps to make these networks biologically plausible (Rolls, 2023a). In contrast, in deep learning the weight changes are computed by an algorithm that has to take into account the errors in the neuronal firing of typically other neurons against some target, and all the connection strengths potentially through multiple networks that might contribute to a computed error in the strength of a synapse, and that is not very biologically plausible (Rolls, 2023a).

Pattern association network

A pattern association network has a set of associatively modifiable inputs (perhaps a conditioned stimulus such as the sight of a food) onto the neurons that during training can become associated with whatever activity the receiving neurons have produced by a forcing input (perhaps an unconditioned stimulus such as the taste of a food) (Fig. S2a and b). It enables for example the sight of food to become associated with its taste by neurons in the orbitofrontal cortex (Rolls, 2023a). In the hippocampal system, this architecture is found for the entorhinal cortex inputs to the CA3 neurons; and in the backprojection synapses from CA1 to the entorhinal cortex, and from the entorhinal cortex to the neocortex (Fig. 1). Details of the operation of pattern association networks can be found in Appendix B2 of *Brain Computations and Connectivity* (Rolls, 2023a) (Open Access at www.oxcns.org), where Matlab demonstration code is provided that can also be run with the free software Octave.

Competitive network

A network that can *categorise* inputs based on their similarity so that similar inputs activate the same set of output neurons, and different inputs activate other output neurons. This is a building block for forming new representations in the brain (Rolls, 2023a). A shown in Fig. 2d, there is one set of inputs, and starting with random synaptic weights, some inputs will tend to activate some output neurons, and other inputs will tend to activate other output neurons. Inhibitory neurons keep the proportion of output neurons firing low, and this implements competition between the neurons and thus output representations. The synapses between the high firing output neurons after the competition and the input patterns are increased relative to the other synapses on the winning neurons, and gradually over several presentations of the different stimuli the network self-organises to categorise the input stimuli. The output representation can be sparse distributed. Details of the operation of competitive networks can be found in Appendix B4 of *Brain Computations and Connectivity* (Rolls, 2023a) (Open Access at www.oxcns.org), where Matlab demonstration code is provided that can also be run with the free software Octave.

Memory pattern

Memory pattern refers to the vector of firing rates of the N neurons in a network such as an autoassociation or pattern association network. Each such memory pattern is referred to as a different memory.

Pattern separation

Pattern separation is the process of reducing the correlations between the output patterns of firing of neuronal networks. This makes the output patterns more orthogonal. Pattern separation is important in terms of the storage capacity of associative networks (Rolls and Treves, 1990; Treves, 1991; Treves and Rolls, 1991), for correlations between the input patterns reduce the storage capacity of these networks (Rolls, 2016, 2023a). The *storage capacity* is the number of memory patterns *p* or associations that can be stored in a network before its performance degrades seriously (Hopfield, 1982; Rolls, 2023a). The term pattern separation was introduced early on into the theory of hippocampal function (Rolls, 1989).

Distributed representation

A representation in which the firing of more than one neuron encodes a single memory or representation.

Sparse distributed representation

A representation in which a relatively small proportion *a* of neurons is active to encode one memory pattern of firing. The measure of sparseness *a* can be generalized to representations with graded (as contrasted with binary) firing rates, as shown in Equation 2 (Rolls and Treves, 1990; Treves, 1990; Treves and Rolls, 1991; Rolls, 2023a).

Diluted connectivity

Connectivity in a network in which there are fewer connections C onto each neuron than there are neurons N in the network, for example in an attractor network. The dilution of connectivity in a

local recurrent collateral network in the neocortex is in the order of 0.1, and in the CA3 network in the hippocampus 0.04 (Fig. 2). Diluted connectivity can have some advantages in autoassociation (Rolls, 2012; Rolls and Webb, 2012), pattern association (Rolls, 2015), and competitive networks (Rolls, 2016) in the brain (Rolls, 2023a).

Functional connectivity

Functional connectivity measures the connectivity between each pair of brain regions by the Pearson correlation between their activations across time. Because it is measured by a correlation, it is not directional, and could reflect common input.

Effective connectivity

Effective connectivity measures the connectivity in each direction between each pair of brain regions. It can be measured by utilizing the functional connectivity and a version of the functional connectivity with a delay of typically 2 s for fMRI (Rolls *et al.*, 2022b) and 20 ms for magnetoencephalography (Rolls *et al.*, 2023f). The effective connectivity that we measure can be described as generative effective connectivity, in that it is the matrix of effective connectivities that can generate the functional connectivity matrix and the delayed functional connectivity matrix (Rolls *et al.*, 2022a; Rolls *et al.*, 2023a; Rolls *et al.*, 2023a, b; Rolls *et al.*, 2023e, d, c; Rolls *et al.*, 2023f; Rolls *et al.*, 2023h; Rolls, 2023; Rolls *et al.*, 2024a; Rolls *et al.*, 2024c).

Place cells

Neurons that respond to a place where an individual such as a rodent is located (O'Keefe and Dostrovsky, 1971; O'Keefe, 1979; Moser *et al.*, 2017).

Spatial view cells

Neurons that respond to a location being viewed in space, found for example in primates including humans (Rolls *et al.*, 1989; Feigenbaum and Rolls, 1991; Rolls and O'Mara, 1995; Rolls *et al.*, 1997; Robertson *et al.*, 1998; Rolls *et al.*, 1998; Georges-François *et al.*, 1999; Rolls and Xiang, 2005; Rolls *et al.*, 2005; Rolls and Xiang, 2006; Rolls and Wirth, 2018; Rolls, 2023b, a). These neurons are very different from place cells, in that spatial view cells respond to the location "out there" in space that is being viewed. The activity of spatial view cells depends on where the individual is fixating or gazing at in space. Spatial view cells are found in the primate parahippocampal cortex and hippocampus.

Idiothetic update (by path integration)

Update of a representation by self-motion. One example is update of a place representation in rodents using head direction and the time and speed of travel (McNaughton *et al.*, 1996). Idiothetic update of place may be implemented in the rodent medial entorhinal cortex by grid cells (Giocomo *et al.*, 2011; Moser *et al.*, 2014). Another example is spatial view cells, that respond even in the dark when the view details are obscured when a primate moves the eyes to look at the spatial view field (Robertson *et al.*, 1998). Idiothetic update of spatial view representations includes path integration for eye position, and takes place in the dorsal visual system (Rolls, 2020), which may then communicate the idiothetic update to the parahippocampal cortex in humans (Rolls, 2023b).

References

- Feigenbaum, J. D. and Rolls, E. T. (1991) Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate. *Psychobiology* **19**, 21-40.
- Georges-François, P., Rolls, E. T. and Robertson, R. G. (1999) Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. *Cereb. Cortex* **9**, 197-212.
- Giocomo, L. M., Moser, M. B. and Moser, E. I. (2011) Computational models of grid cells. *Neuron* **71**, 589-603.
- Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M. and Van Essen, D. C. (2016) A multimodal parcellation of human cerebral cortex. *Nature* 536, 171-178.
- Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. *Proc. Natl. Acad. Sci. U. S. A.* **79**, 2554-2558.
- Huang, C. C., Rolls, E. T., Feng, J. and Lin, C. P. (2022) An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas. *Brain Struct Funct* 227, 763-778.
- Ma, Q., Rolls, E. T., Huang, C.-C., Cheng, W. and Feng, J. (2022) Extensive cortical functional connectivity of the human hippocampal memory system. *Cortex* **147**, 83-101.
- McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., Knierim, J. J., Kudrimoti, H., Qin, Y., Skaggs, W. E., Suster, M. and Weaver, K. L. (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. *J. Exp. Biol.* **199**, 173-185.
- Moser, E. I., Moser, M. B. and Roudi, Y. (2014) Network mechanisms of grid cells. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **369**, 20120511.
- Moser, E. I., Moser, M. B. and McNaughton, B. L. (2017) Spatial representation in the hippocampal formation: a history. *Nat. Neurosci.* **20**, 1448-1464.
- O'Keefe, J. and Dostrovsky, J. (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. *Brain Res.* **34**, 171-175.
- O'Keefe, J. (1979) A review of the hippocampal place cells. Prog. Neurobiol. 13, 419-439.
- Robertson, R. G., Rolls, E. T. and Georges-François, P. (1998) Spatial view cells in the primate hippocampus: Effects of removal of view details. *J. Neurophysiol.* **79**, 1145-1156.
- Rolls, E. T. (1989) Functions of neuronal networks in the hippocampus and neocortex in memory. In: *Neural Models of Plasticity: Experimental and Theoretical Approaches*. pp. 240-265. Eds. J. H. Byrne, W. O. Berry. Academic Press: San Diego.
- Rolls, E. T., Miyashita, Y., Cahusac, P. M. B., Kesner, R. P., Niki, H., Feigenbaum, J. and Bach, L. (1989) Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. J. Neurosci. 9, 1835-1845.
- Rolls, E. T. and Treves, A. (1990) The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. *Network* **1**, 407-421.
- Rolls, E. T. and O'Mara, S. M. (1995) View-responsive neurons in the primate hippocampal complex. *Hippocampus* **5**, 409-424.
- Rolls, E. T., Robertson, R. G. and Georges-François, P. (1997) Spatial view cells in the primate hippocampus. *Eur. J. Neurosci.* **9**, 1789-1794.
- Rolls, E. T., Treves, A., Robertson, R. G., Georges-François, P. and Panzeri, S. (1998) Information about spatial view in an ensemble of primate hippocampal cells. *J. Neurophysiol.* **79**, 1797-1813.
- Rolls, E. T. and Xiang, J.-Z. (2005) Reward-spatial view representations and learning in the hippocampus. *J. Neurosci.* **25**, 6167–6174.
- Rolls, E. T., Xiang, J.-Z. and Franco, L. (2005) Object, space and object-space representations in the primate hippocampus. *J. Neurophysiol.* **94**, 833-844.

- Rolls, E. T. and Xiang, J.-Z. (2006) Spatial view cells in the primate hippocampus, and memory recall. *Rev. Neurosci.* **17**, 175-200.
- Rolls, E. T. (2012) Advantages of dilution in the connectivity of attractor networks in the brain. *Biologically Inspired Cognitive Architectures* **1**, 44-54.
- Rolls, E. T. and Webb, T. J. (2012) Cortical attractor network dynamics with diluted connectivity. *Brain Res.* **1434**, 212-225.
- Rolls, E. T. (2015) Diluted connectivity in pattern association networks facilitates the recall of information from the hippocampus to the neocortex. *Prog. Brain Res.* **219**, 21-43.
- Rolls, E. T. (2016) Pattern separation, completion, and categorisation in the hippocampus and neocortex. *Neurobiol. Learn. Mem.* **129**, 4-28.
- Rolls, E. T. and Wirth, S. (2018) Spatial representations in the primate hippocampus, and their functions in memory and navigation. *Prog. Neurobiol.* **171**, 90-113.
- Rolls, E. T. (2020) Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation. *Hippocampus* **30**, 332-353.
- Rolls, E. T. (2022) The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. *Prog. Neurobiol.* **217**, 102334.
- Rolls, E. T., Deco, G., Huang, C.-C. and Feng, J. (2022a) The human language effective connectome. *Neuroimage* **258**, 119352.
- Rolls, E. T., Deco, G., Huang, C. C. and Feng, J. (2022b) The effective connectivity of the human hippocampal memory system. *Cereb. Cortex* **32**, 3706-3725.
- Rolls, E. T. (2023a) *Brain Computations and Connectivity*. Oxford University Press, Open Access: Oxford.
- Rolls, E. T. (2023b) Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. *Hippocampus* **33**, 533-572.
- Rolls, E. T., Deco, G., Huang, C.-C. and Feng, J. (2023a) Human amygdala compared to orbitofrontal cortex connectivity, and emotion. *Prog. Neurobiol.* **220**, 102385.
- Rolls, E. T., Deco, G., Huang, C.-C. and Feng, J. (2023b) Multiple cortical visual streams in humans. *Cereb. Cortex* **33**, 3319-3349.
- Rolls, E. T., Deco, G., Huang, C. C. and Feng, J. (2023c) The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. *Cereb. Cortex* 33, 330-359.
- Rolls, E. T., Deco, G., Huang, C. C. and Feng, J. (2023d) The human posterior parietal cortex: effective connectome, and its relation to function. *Cereb. Cortex* **33**, 3142-3170.
- Rolls, E. T., Deco, G., Huang, C. C. and Feng, J. (2023e) Prefrontal and somatosensory-motor cortex effective connectivity in humans. *Cereb. Cortex* **33**, 4939-4963.
- Rolls, E. T., Deco, G., Zhang, Y. and Feng, J. (2023f) Hierarchical organization of the human ventral visual streams revealed with magnetoencephalography. *Cereb. Cortex* **33**, 10686-10701.
- Rolls, E. T., Rauschecker, J. P., Deco, G., Huang, C. C. and Feng, J. (2023g) Auditory cortical connectivity in humans. *Cereb. Cortex* **33**, 6207-6227.
- Rolls, E. T., Wirth, S., Deco, G., Huang, C.-C. and Feng, J. (2023h) The human posterior cingulate, retrosplenial and medial parietal cortex effective connectome, and implications for memory and navigation. *Hum. Brain Mapp.* 44, 629-655.
- Rolls, E. T. (2024) Two What, Two Where, Visual Cortical Streams in Humans. *Neurosci. Biobehav. Rev.* **160**, 105650.
- Rolls, E. T., Deco, G., Huang, C.-C. and Feng, J. (2024a) The connectivity of the human frontal pole cortex, and a theory of its involvement in exploit vs explore. *Cereb. Cortex* **34**, 1-19.
- Rolls, E. T., Feng, J. and Zhang, R. (2024b) Selective activations and functional connectivities to the sight of faces, scenes, body parts and tools in visual and non-visual cortical regions leading to the human hippocampus. *Brain Structure and Function*, doi: 10.1007/s00429-00024-02811-00426.

- Rolls, E. T., Yan, X., Deco, G., Zhang, Y. and Feng, J. (2024c) A ventromedial visual cortical 'Where' stream to the human hippocampus for spatial scenes revealed with magnetoencephalography. *Communications Biology*.
- Treves, A. (1990) Graded-response neurons and information encodings in autoassociative memories. *Phys Rev A* **42**, 2418-2430.
- Treves, A. (1991) Dilution and sparse coding in threshold-linear nets. Journal of Physics A 24, 327-335.
- Treves, A. and Rolls, E. T. (1991) What determines the capacity of autoassociative memories in the brain? *Network* **2**, 371-397.