
Hippocampal storage and recall of neocortical
‘What’ - ‘Where’ representations

Supplementary Material

Hippocampus (2024) doi: 10.1002/hipo.23636

August 23, 2024

Edmund T. Rolls
Oxford Centre for Computational Neuroscience, Oxford, UK

and University of Warwick, Department of Computer Science, Coventry
CV4 7AL, UK

and Institute of Science and Technology for Brain Inspired Intelligence,
Fudan University, Shanghai 200403, China

and

Chenfei Zhang
Institute of Science and Technology for Brain Inspired Intelligence, Fudan

University, Shanghai 200403, China
and

Jianfeng Feng
University of Warwick, Department of Computer Science, Coventry CV4

7AL, UK
and Institute of Science and Technology for Brain Inspired Intelligence,

Fudan University, Shanghai 200403, China

Corresponding author: Professor Edmund T. Rolls, Oxford Centre for
Computational Neuroscience, Oxford, UK. Email: Edmund.Rolls@oxcns.org,
Url: https://www.oxcns.org

1



1 Rate simulation of the hippocampal system
A description of the architecture that is simulated is shown in Fig. 1.
The main text of the paper describes each stage of the circuitry. In this
part of the Supplementary Material the Equations for the rate simulation
are provided, and further background information is provided elsewhere
(Rolls 1995). The convention is that the modules are named for exam-
ple as EntoWhat (with the abbreviations shown in Fig. 1), and connections
to NcWhat from EntoWhat are described as NcWhatFromEntoWhat.

1.1 Rate model: neocortex
During training, the random binary 0-1 patterns applied to NcWhat and
NcWhere are passed to EntoWhat and EntoWhere to provide their in-
puts. Also during training, the backprojections from the EntoWhat and
EntoWhere to NcWhat and NcWhere are modified by Hebbian associative
learning as shown in Eq. 1 to allow later recall when the backprojections
are active:

δwij = αyixj (1)

where δwij is the change of the synaptic weight wij that results from the
simultaneous (or conjunctive) presence of presynaptic firing xj from the
entorhinal cortex and postsynaptic firing of the neocortical neurons yi, and
α is a learning rate constant that specifies how much the synapses alter on
any one pairing. One pairing is sufficient for each pattern pair, and the
learning rate can be 1.

During recall, the backprojections to NcWhat and NcWhere from En-
toWhat and EntoWhere operate by standard pattern association recall (Rolls
2023). The total activation hi of a neocortical neuron i is the sum of all the
activations produced through each strengthened synapse wij on the neo-
cortical neuron by each active entorhinal neuron xj . We can express this
as

hi =
C∑

j=1

xjwij (2)

where
C∑

j=1
indicates that the sum is over the C input axons (or connections)

indexed by j to each neuron. The activation hi is converted into firing yi.
This conversion can be expressed as

yi = f(hi) (3)

where the function f is the activation function (Rolls 2023), which for this
research was threshold binary (meaning that above a threshold of activation,
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Figure 1: Simulation of neocortical ‘What’ and ‘Where’ inputs to the hip-
pocampus for the storage of episodic memory, and for the recall of ‘What’
(object) and ‘Where’ (spatial view in primates or place in rodents) informa-
tion back to the ‘What’ and ‘Where’ neocortex. The pyramidal cell bodies
are shown as triangles, the dendrites as the thick lines above the cell bod-
ies, and the axons as thin lines terminated with an arrow. The numbers of
synapses shown are the numbers on any one neuron. The backprojection
pathways for memory recall are shown in dashed green lines, and in red
the CA3 recurrent collaterals via which ‘What’ and ‘Where’ representations
present at the same time can be associated during episodic memory storage,
and via which completion of a whole memory from a part can occur dur-
ing recall. All synapses are associatively modifiable except for the Dentate
Gyrus (DG) mossy fibre (mf) synapses on the CA3 pyramidal cells. The
dentate granule cells, the CA1 cells, and the entorhinal cortex inputs from
the neocortex operate as competitive networks. The CA3 cells operate as an
autoassociation attractor network to implement completion. The backpro-
jection connections shown in green operate as pattern association networks
(Rolls 2023). The sparseness can be measured by the proportion of neurons
with high firing rates (see text). The abbreviations used in this Supplemen-
tary Material for some of the modules are shown in this figure.
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the firing rate was 1, and below the threshold it was 0). (A threshold linear
activation function was also tested, with which if above the threshold, the
firing was set to the activation.) The threshold was set to a value to produce
the value for the sparseness shown in Fig. 1, where sparseness is defined for
binary neurons as the proportion of the neurons with a high firing rate
(Rolls 2023).

1.2 Rate model: entorhinal cortex
During training, the entorhinal cortex modules each act as a competitive
network, which can be useful in categorisation (Rolls 2023). The firing rates
of the entorhinal cortex neurons produced by the forward inputs from the
neocortex are produced as described above for the neocortex with Eqs. 2 and
3. Then the synapses between the active inputs from the neocortex and the
high firing rate entorhinal cortex neurons are associatively modified by the
Hebb associative learning rule Eq. 1. Because all firing rates are positive,
the synaptic weights are positive. In the competitive network, the length of
the synaptic weight vector on each neuron is then normalized to a length of
1, so that the different neurons compete on an equal basis (Rolls 2023). Also
during training, the backprojections from CA1 to EntoWhat and EntoWhere
are modified by Hebbian associative learning as shown in Eq. 1 to allow later
recall when the backprojections are active.

During recall, the backprojections to EntoWhat and EntoWhere from
CA1 operate by standard pattern association recall (Rolls 2023) in a similar
way to that described in Section 1.1 and Eqs. 2 and 3.

1.3 Rate model: CA1
During training, the CA1 acts as a competitive network, which is useful
in categorising the necessarily separate What and Where components of
the episodic memory in CA3 to a more efficient combination to act as a
recall cue back to the entorhinal cortex and thereby neocortex (Treves and
Rolls 1994, Rolls 2023, Rolls and Treves 2024). The firing rates of the CA1
neurons produced by the forward inputs from CA3 are produced as described
above for the neocortex with Eqs. 2 and 3. Then the synapses between
the active inputs and the high firing rate CA1 neurons are associatively
modified by the Hebb associative learning rule Eq. 1. In the competitive
network, the length of the synaptic weight vector on each neuron is then
normalized to a length of 1, so that the different neurons compete on an
equal basis (Rolls 2023). Also during training, the backprojections from
CA1 to EntoWhat and EntoWhere are modified by Hebbian associative
learning as shown in Eq. 1 to allow later recall when CA1 is active.

During recall, the connections from CA3 to CA1 operate in CA1 as
usual in a competitive network to activate the correct neurons in CA1 via
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the modified synapses (Rolls 2023) in a similar way to that described in
Section 1.1 and Eqs. 2 and 3, with the sparseness being set during recall in
CA1 in the same way as described above.

1.4 Rate model: CA3
The CA3 neurons are implemented as an attractor network (Treves and
Rolls 1994, Rolls 2023, Rolls and Treves 2024). During training, the strong
mossy fibre non-associatively modifiable synapses from the dentate granule
cells with their very highly diluted connectivity (Fig. 1) select a new set of
CA3 cells to be active for that episodic memory (Treves and Rolls 1992). The
CA3 to CA3 associatively modifiable synapses for the attractor network then
learn according to the Hebb rule Eq. 1, increasing the connection weights
that are between the random new set of neurons currently firing because of
the dentate input. To provide for recall, the synapses from the entorhinal
cortex neurons that are active onto the currently active CA3 neurons are
associatively modified according to Eq. 1, to set up the pathway that will
later be used to trigger completion and recall in the CA3-CA3 attractor
network (Treves and Rolls 1992). We identified the dentate to CA3 pathway
as the pathway for recall of CA3 firing which is then completed by the
CA3-CA3 attractor network connections because the entorhinal input has
a relatively high number of synapses on each CA3 neuron (Fig. 1), and is
associatively modifiable (Treves and Rolls 1992).

During recall, the entorhinal inputs to CA3 neurons trigger recall through
the associatively modifiable synapses (Eq. 2). The CA3-CA3 connections
then operate as an attractor network to complete what is likely to be an in-
complete input, from e.g. EntoWhat only, not from EntoWhere, using Eq.
2. Care is taken to scale the activations to be stronger from CA3-CA3 than
from the entorhinal cortex to CA3, to ensure that the completion performed
by the CA3-CA3 network is fully evident in the active CA3 neurons. During
this process, the activations are converted into rates according to Eq. 3, and
the sparseness of the firing is controlled as described above. During recall,
it is assumed that the dentate inputs do not make a major contribution to
dominate the firing of the CA3 cells (Treves and Rolls 1992), with for exam-
ple low acetylcholine during recall increasing the efficacy of the CA3-CA3
recurrent collaterals, as well as decreasing the learning rate in these synapses
(Hasselmo and Bower 1993, Hasselmo, Schnell and Barkai 1995, Hasselmo,
Wyble and Wallenstein 1996, Hasselmo 1999). (In contrast, during learning,
high acetylcholine, perhaps triggered by reward or punishment inputs to the
orbitofrontal cortex which in turn has connectivity to cholinergic neurons
(Rolls, Deco, Huang and Feng 2022, Rolls 2022), may increase the synap-
tic learning rate in the CA3-CA3 connections, and decrease the efficacy of
the recurrent collaterals in order to minimise effects of information already
stored in CA3 (Hasselmo and Bower 1993, Hasselmo et al. 1995, Hasselmo
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et al. 1996, Hasselmo 1999, Rolls and Treves 2024).)

2 Integrate-and-fire simulations of the hippocam-
pal system

2.1 Implementation of the integrate-and-fire model of the
hippocampal system with neuronal and synaptic dynam-
ics

We use the mathematical formulation of the integrate-and-fire neurons and
synaptic currents described by Brunel and Wang (2001). Here we provide a
brief summary of this framework.

The dynamics of the sub-threshold membrane potential V of a neuron
are given by the equation:

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t), (4)

Both excitatory and inhibitory neurons have a resting potential VL =
−70mV , a firing threshold Vthr = −50mV and a reset potential Vreset =
−55mV . The membrane parameters are different for both types of neurons:
Excitatory (Inhibitory) neurons are modeled with a membrane capacitance
Cm = 0.5nF (0.2nF ), a leak conductance gm = 25nS (20nS), a membrane
time constant τm = 20ms (10ms), and a refractory period tref = 2ms
(1ms). Values are extracted from McCormick, Connors, Lighthall and
Prince (1985).

When the threshold membrane potential Vthr is reached, the neuron is
set to the reset potential Vreset at which it is kept for a refractory period
τref and the action potential is propagated to the other neurons.

Each network has NE = 5000 excitatory neurons and NI = 1250 in-
hibitory neurons which are conneced to each other, consistent with the ob-
served proportions of the pyramidal neurons and interneurons in the cerebral
cortex (Braitenberg and Schütz 1991, Abeles 1991). The synaptic current
impinging on each neuron is given by the sum of recurrent excitatory currents
(IAMPA,rec and INMDA,rec), the external excitatory current(IAMPA,ext), and
the inhibitory current (IGABA):

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t). (5)

The recurrent excitation is mediated by the AMPA and NMDA recep-
tors, inhibition by GABA receptors. In addition, the neurons are exposed to
external Poisson input spike trains mediated by AMPA receptors at a rate
of 2.4 kHz. These can be viewed as originating from Next = 800 external
neurons at an average rate of 3 Hz per neuron, consistent with the spon-
taneous activity observed in the cerebral cortex (Wilson, O’Scalaidhe and
Goldman-Rakic 1994, Rolls and Treves 1998). The currents are defined by:
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IAMPA,ext(t) = gAMPA,ext(V (t)− VE)

Next∑
j=1

sAMPA,ext
j (t) (6)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)

NE∑
j=1

wAMPA
ji sAMPA,rec

j (t) (7)

INMDA,rec(t) =
gNMDA(V (t)− VE)

1 + [Mg++]exp(−0.062V (t))/3.57
×

NE∑
j=1

wNMDA
ji sNMDA

j (t)(8)

IGABA(t) = gGABA(V (t)− VI)

NI∑
j=1

wGABA
ji sGABA

j (t) (9)

where VE = 0 mV, VI = −70 mV, wji are the synaptic weights, sj ’s
the fractions of open channels for the different receptors and g’s the synap-
tic conductances for the different channels. The NMDA synaptic current
depends on the membrane potential and the extracellular concentration
of Magnesium ([Mg++] = 1 mM (Jahr and Stevens 1990)). The values
for the synaptic conductances for excitatory neurons are gAMPA,ext = 2.08
nS, gAMPA,rec = 0.104 nS, gNMDA = 0.327 nS and gGABA = 1, 25 nS ;
and for inhibitory neurons gAMPA,ext = 1.62 nS, gAMPA,rec = 0.081 nS,
gNMDA = 0.258 nS and gGABA = 0.973 nS for 800 synapses per neuron.
These values are obtained from the ones used by Brunel and Wang (2001).
The conductances and synaptic weights were set so that in an unstructured
network the excitatory neurons have a spontaneous spiking rate of 3 Hz and
the inhibitory neurons a spontaneous rate of 9 Hz. The fractions of open
channels are described by:

dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (10)

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (11)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj(t)(1− sNMDA

j (t)) (12)

dxj(t)

dt
= − xj(t)

τNMDA,rise
+

∑
k

δ(t− tkj ) (13)

dsGABA
j (t)

dt
= −

sGABA
j (t)

τGABA
+
∑
k

δ(t− tkj ), (14)

where τNMDA,decay = 100 ms is the decay time for NMDA synapses,
τAMPA = 6 ms for AMPA synapses to allow for propagation effects (Hestrin,
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Sah and Nicoll 1990, Spruston, Jonas and Sakmann 1995) and τGABA =
10 ms for GABA synapses (Salin and Prince 1996, Xiang, Huguenard and
Prince 1998); τNMDA,rise = 2 ms is the rise time for NMDA synapses (the
rise times for AMPA and GABA are neglected because they are typically
very short) and α = 0.5 ms−1. The sums over k represent a sum over spikes
formulated as δ-Peaks δ(t) emitted by presynaptic neuron j at time tkj .

The equations were integrated numerically using a forward Euler method
with step size 0.1 ms.

2.2 Connectivity
The architecture implemented with integrate-and-fire neurons is that shown
in Fig. 1 (Rolls, Zhang and Feng 2024).

Each of the seven modules has full connectivity between the 5000 ex-
citatory neurons and 1250 inhibitory neurons, i.e. wEtoI, wItoE and wItoI.
In an integrate-and-fire network, it is necessary to specify the connectivity
strengths for the excitatory and the inhibitory neurons within each module.
In the model attractor network (Brunel and Wang 2001, Rolls 2023), the
default value for the excitatory to inhibitory (E to I) neuron connectivity,
and for the inhibitory to excitatory connectivity, is 1.0. That value was
used in the integrate-and-fire simulations described here except as follows.
It was found that increasing the E to I connectivity to e.g. 9 could help
to stabilize the whole network, and was especially important in CA3 and
CA1. The actual values used for the E to I connectivity when not 1.0 were:
EntoWhat=EntoWhere = 15; CA3 = 9; CA1 = 7. The only module where
there was connectivity between the excitatory neurons within a module was
CA3, where the value was increased between the 250 neurons used to store
any one episodic memory to a value sufficient to maintain the attractor. The
inhibitory neurons within a module inhibited each other with a connection
weight of 1 (Brunel and Wang 2001).

All synaptic weight matrices were imported from the rate simulation de-
scribed in the Methods of the main text, section Rate Model of the neocortical-
hippocampal system, and were scaled to produce the minimal values to pro-
duce the effects illustrated in the figures in the main text. For the diluted
connectivity between modules, the connectivity to each neuron was set up
from a randomly permuted subset of neurons in the sending module, to en-
sure that no neuron had more than one connection from a sending neuron,
as that can affect the memory capacity (Rolls 2012).

2.3 Calcium-dependent spike frequency adaptation mecha-
nism

A specific implementation of the spike-frequency adaptation mechanism us-
ing Ca++-activated K+ hyper-polarizing currents (Liu and Wang 2001) is
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described next, and was used by Deco and Rolls (2005). We assume that
the intrinsic gating of K+ After-Hyper-Polarizing current (IAHP) is fast, and
therefore its slow activation is due to the kinetics of the cytoplasmic Ca2+
concentration. This can be introduced in the model by adding an extra
current term in the integrate-and-fire model, i.e. by adding IAHP on the
right hand of equation 15, which describes the evolution of the subthreshold
membrane potential V (t) of each neuron:

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t) (15)

where Isyn(t) is the total synaptic current flow into the cell, VL is the rest-
ing potential, Cm is the membrane capacitance, and gm is the membrane
conductance. The extra current term that is introduced into this equation
is as follows:

IAHP = −gAHP[Ca
2+](V (t)− VK) (16)

where VK is the reversal potential of the potassium channel. Further, each
action potential generates a small amount (α) of calcium influx, so that
IAHP is incremented accordingly. Between spikes the [Ca2+] dynamics is
modelled as a leaky integrator with a decay constant τCa. Hence, the calcium
dynamics can be described by the following system of equations:

d[Ca2+]

dt
= − [Ca2+]

τCa
(17)

If V (t) = θ, then [Ca2+] = [Ca2+] +α and V = Vreset, and these are coupled
to the equations of the neural dynamics provided here and elsewhere (Rolls
and Deco 2010). The [Ca2+] is initially set to be 0 µM, τCa = 600 ms,
α = 0.002, and VK = −80 mV. As described in the main text, the gAHP for
all excitatory neurons was set to 150 nS, except for the entorhinal cortex
where it was 450 nS, and in CA3 where it was set to 0 nS to help promote
continuing firing. These values do produce marked adaptation, and were
chosen so that the adaptation would be clearly evident in the Figures in
the main text, and to emphasize what we propose is a key mechanism for
maintaining cortical stability and minimizing runaway excitation between
the excitatory neurons of the cortex.

2.4 Presynaptic adaptation or depression
Synaptic efficacy is modulated by the amount of available resources (x, nor-
malized so that 0 < x < 1) and the utilization parameter (u) that defines
the fraction of resources used by each spike, reflecting the residual calcium
level. When a spike occurs, an amount ux of the available resources is used
to produce the postsynaptic current, thus reducing x. This process mimics
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neurotransmitter depletion. Between spikes, x recovers to its baseline level
(x = 1) with time constant τD (depressing). This phenomenological model
reproduces the presynaptic adaptation or depression of cortical synapses
(Mongillo, Barak and Tsodyks 2008). This was implemented as follows.

Each excitatory synapse to any excitatory neuron is modulated by the
presynaptic adaptation factor xj(t) described by the following dynamics
(Mongillo et al. 2008):

xj(t)

dt
=

1− xj(t)

τD
− uxj(t))

∑
k

δ(t− tkj ),

where u = 0 − 1 and τD = 500 ms, and tkj is the time of the corresponding
presynaptic spikes. For this work, a value of u = 1 was found suitable
to help control the firing rates of the excitatory neurons in the coupled
systems investigated in the neocortex and entorhinal cortex, and was 0.08
for CA3 and 0.1 for CA1 to help these neurons maintain their firing for
several hundred ms.

2.5 The model parameters used in the integrate-and-fire sim-
ulations

The fixed parameters of the model are shown in Table 1, and not only provide
information about the values of the parameters used in the simulations, but
also enable them to be compared to experimentally measured values. The
conductance values are similar to those in previous research on attractor
networks (Brunel and Wang 2001, Rolls, Grabenhorst and Deco 2010, Rolls
and Deco 2015), and the synaptic weights are scaled to produce similar
currents from different sources such as excitatory to inhibitory, inhibitory
to excitatory, and excitatory to excitatory, as in this previous research.
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Table 1: Parameters used in the integrate-and-fire simulations
NE 5000 in each module
NI 1250 in each module
wEtoI 1.0 default, except where stated
wItoE 1.0
wItoI 1.0
Next 800
νext 2.4 kHz
Cm (excitatory) 0.5 nF
Cm (inhibitory) 0.2 nF
gm (excitatory) 25 nS
gm (inhibitory) 20 nS
VL –70 mV
Vthr –50 mV
Vreset –55 mV
VE 0 mV
VI –70 mV
gAMPA,ext (excitatory) 2.08 nS
gAMPA,rec (excitatory) 0.104 nS
gNMDA (excitatory) 0.327 nS
gGABA (excitatory) 1.25 nS
gAMPA,ext (inhibitory) 1.62 nS
gAMPA,rec (inhibitory) 0.081 nS
gNMDA (inhibitory) 0.258 nS
gGABA (inhibitory) 0.973 nS
τNMDA,decay 100 ms
τNMDA,rise 2 ms
τAMPA 6 ms
τGABA 10 ms
α 0.5 ms−1 for NMDA dynamics
τD 500 ms presynaptic depression time constant
u 0.08 - 1.0 presynaptic depression utilization factor, see values above
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