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Abstract

A key question for understanding the function of the hippocampus in memory is how

information is recalled from the hippocampus to the neocortex. This was investigated

in a neuronal network model of the hippocampal system in which “What” and

“Where” neuronal firing rate vectors were applied to separate neocortical modules,

which then activated entorhinal cortex “What” and “Where” modules, then the den-

tate gyrus, then CA3, then CA1, then the entorhinal cortex, and then the backprojec-

tions to the neocortex. A rate model showed that the whole system could be trained

to recall “Where” in the neocortex from “What” applied as a retrieval cue to the neo-

cortex, and could in principle be trained up towards the theoretical capacity deter-

mined largely by the number of synapses onto any one neuron divided by the

sparseness of the representation. The trained synaptic weights were then imported

into an integrate-and-fire simulation of the same architecture, which showed that the

time from presenting a retrieval cue to a neocortex module to recall the whole mem-

ory in the neocortex is approximately 100 ms. This is sufficiently fast for the backpro-

jection synapses to be trained onto the still active neocortical neurons during storage

of the episodic memory, and this is needed for recall to operate correctly to the neo-

cortex. These simulations also showed that the long loop neocortex–hippocampus–

neocortex that operates continuously in time may contribute to complete recall in

the neocortex; but that this positive feedback long loop makes the whole dynamical

system inherently liable to a pathological increase in neuronal activity. Important fac-

tors that contributed to stability included increased inhibition in CA3 and CA1 to

keep the firing rates low; and temporal adaptation of the neuronal firing and of active

synapses, which are proposed to make an important contribution to stabilizing

runaway excitation in cortical circuits in the brain.
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1 | INTRODUCTION

The aim of this research is to advance understanding of the storage of

information from the neocortex to the hippocampus, and the recall

of information back to the neocortex. Key issues investigated are

(1) how recall to the neocortex from the hippocampus operates, to

recall for example a neocortical “Where” representation from a neo-

cortical “What” recall cue; (2) the capacity of this storage and recall

operation in terms of the number of memories that can be stored and

later recalled; (3) the effect of continuous interaction between the

neocortex and hippocampus in retrieving a complete memory; and

(4) the roles of strong inhibition in hippocampal CA3 and CA1, and of

temporal adaptation of neuronal firing and of active synapses, in main-

taining stability in the long loop with the excitatory connections from

the neocortex to the hippocampus and back to the neocortex when it

operates in continuous time.

The model and simulations described build on a foundation of the

only quantitative computational theory of the storage of information

from the neocortex in the hippocampus, and the recall of information

from the hippocampus back to the neocortex (Kesner & Rolls, 2015;

Rolls, 1995, 2018, 2021c, 2023b; Rolls et al., 2002; Rolls & Treves,

1994, 2024; Treves & Rolls, 1992, 1994). (One previous model did not

include the neocortex, did not have an analytic theory for the memory

capacity of the whole model, and did not measure the memory capacity

of the whole network, that is the number of memories that can be

stored and successfully recalled (Hasselmo & Wyble, 1997). Another

model did not have an analytic theory for the memory capacity of the

whole model, and did not measure the memory capacity of the whole

network (Norman & O'Reilly, 2003).) The model described here enables

key aspects of the memory storage and recall computations to be

tested; and provides a brain system that can become part of a larger

simulation of how different brain systems link together. Such a larger

simulation could include a model of the “What” cortical system for

object and face representations (Rolls, 2021d, 2023b); a model of the

ventromedial “Where” cortical stream for the representation of loca-

tions in spatial scenes (Rolls, 2024b, 2024c; Rolls & Stringer, 2005;

Rolls & Treves, 2024; Stringer et al., 2005); and a model of the type

described here of how for episodic memory the hippocampus is

involved in associating “What” with “Where” neocortical inputs, and

later recalling them back to neocortex to remember what was seen,

and where it was seen, on a particular occasion (Kesner & Rolls, 2015;

Rolls, 2023b, 2024c; Rolls & Treves, 2024).

A key feature of the research described here is that it includes an

integrate-and-fire implementation of the neocortical–hippocampal

system for memory recall, to enable an estimate of the time it takes

for a memory retrieval cue applied to one part of the neocortex to

recall the whole of the episodic memory to relevant other parts of the

neocortex by accessing the hippocampus, and activating the return

pathways to the neocortex. This is important, for the theory of how

the correct neocortical neurons are activated by the hippocampal

backprojections requires that the backprojections are active during

learning and are sufficiently fast in reaching the neocortex for a pat-

tern association to be learned between the active backprojection

axons (green in Figures 1 and 2) to the still active neocortical pyrami-

dal cells (Rolls, 1989a; Rolls & Treves, 1994, 2024; Treves &

Rolls, 1994). That time is currently unknown, and this is as far as we

know the first full integrate-and-fire neuron model of the neocortical–

hippocampal–neocortical system as illustrated in Figure 1. An

integrate-and-fire implementation is an appropriate way to test this

time of processing, for integrate-and-fire implementations take into

account realistic time constants for the different synapses involved,

and the time that it takes for a biologically plausible attractor network

such as hippocampal CA3 to fall into its basin of attraction

(Battaglia & Treves, 1998; Panzeri et al., 2001; Rolls, 2023b; Rolls &

Webb, 2012; Treves et al., 1997; Webb et al., 2011).

The architecture of the hippocampo–neocortical system to be

investigated is illustrated in Figures 1 and 2 (Rolls, 2023c). The

overall concept is that the hippocampus in its CA3 attractor net-

work can associate representations about objects or faces, so-called

“What” representations, with spatial or “Where” representations, to

provide an episodic memory for where a particular face or object

has been seen on a particular previous occasion (Rolls, 2023b;

Rolls & Treves, 2024; Treves & Rolls, 1994). In primates including

humans the neocortical “What” object and face information is in

the inferior temporal visual cortical regions, and the “Where” infor-

mation is about the spatial view, in regions such as the medial tem-

poral lobe parahippocampal scene (sometimes called place) area,

and perhaps other neocortical regions (Epstein & Baker, 2019;

Rolls, 2021d, 2023b; Rolls, Deco, et al., 2023a; Rolls, Feng, &

Zhang, 2024; Rolls & Turova, 2024; Rolls, Yan, et al., 2024). The

backprojection pathways for memory recall are shown in Figures 1

and 2 in dashed green lines, and in red the CA3 recurrent collaterals

via which “what” and “where” representations present at the same

time can be associated during episodic memory storage, and via

which completion of a whole memory from a part can occur during

recall. In rodents the neocortical representations are less well

understood, and the main spatial representations are in the hippo-

campus about the place where the individual is located (Burgess &

O'Keefe, 1996; Hartley et al., 2014; O'Keefe, 1979), and in the

entorhinal cortex again about places where the individual is located

using grid cells (Moser et al., 2017).

Quantitative details of the architecture that was simulated are

shown in Figure 2 (Rolls, 2023c). All synapses are associatively modifi-

able except for the Dentate Gyrus (DG) mossy fiber (mf) synapses on

the CA3 pyramidal cells. The dentate granule cells, the CA1 cells, and

the entorhinal cortex inputs from the neocortex operate as competi-

tive networks (Rolls, 2023b). The CA3 cells operate as an autoassocia-

tion (Huang et al., 2021) attractor network to implement completion

(Rolls, 2023b). The backprojection connections shown in green oper-

ate as pattern association networks (Rolls, 2023b).

Recent research on the pathways involved in this hippocampal

processing in the human brain, and on the implications for understand-

ing hippocampal episodic memory, and memory consolidation, include

the following: (Huang et al., 2021; Ma et al., 2022; Rolls, 2018, 2020,

2021b, 2021c, 2022, 2023a, 2023b, 2023c, 2024a, 2024c; Rolls

et al., 2022a, 2022b; Rolls, Deco, et al., 2023a, 2023b; Rolls, Feng, &
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Zhang, 2024; Rolls & Turova, 2024; Rolls, Wirth, et al., 2023; Rolls,

Yan, et al., 2024).

2 | METHODS

The theory of operation of the hippocampo–neocortical system

(Rolls & Treves, 2024; Treves & Rolls, 1994) referred to in the

Introduction provides a foundation for the model simulated here

and shown in Figure 2. The model was implemented as follows,

first as a Rate model, and then to measure the recall time, as

an integrate-and-fire model, with full details provided in the

Appendix S1.

2.1 | Rate model of the neocortical–hippocampal
system

The model utilized diluted connectivity, for this is a feature of neocor-

tical and hippocampal design (Rolls, 2016a, 2018, 2023b; Rolls &

Treves, 1994, 2024; Treves & Rolls, 1994), and was indeed incorpo-

rated in an earlier model (Rolls, 1995), which is extended here by add-

ing neocortical “What” and “Where” layers, and by correspondingly

adding separate entorhinal cortex lateral “What” and medial “Where”
parts, as in Figure 2. The dilution of connectivity (the proportion of

synapses on a neuron compared to the number of neurons in the net-

work (Rolls, 2023b)) utilized in the model was in general 5, with for

example 200 synapses on each neuron in a network with 1000

F IGURE 1 The human/primate hippocampus receives neocortical input connections (blue) not only from the “what” temporal lobe and
“where” parietal and ventral visual scene areas but also from the “reward” prefrontal cortex areas (orbitofrontal cortex, vmPFC, and anterior
cingulate cortex) for episodic memory storage; and has return backprojections (green) to the same neocortical areas for memory recall. There is
great convergence via the parahippocampal gyrus, perirhinal cortex, and dentate gyrus in the forward connections down to the single network
implemented in the CA3 pyramidal cells, which have a highly developed recurrent collateral system (red) to implement an attractor episodic
memory by associating the what, where and reward components of an episodic memory. (a) Block diagram. (b) Some of the principal excitatory
neurons and their connections in the pathways. Time and temporal order are also important in episodic memory and may be computed in the
entorhinal–hippocampal circuitry (Rolls & Mills, 2019). D, Deep pyramidal cells; DG, dentate granule cells; F, Forward inputs to areas of the
association cortex from preceding cortical areas in the hierarchy; mf, Mossy fibers; PHG, parahippocampal gyrus and perirhinal cortex; pp,
perforant path; rc, recurrent collateral of the CA3 hippocampal pyramidal cells; S, superficial pyramidal cells; 2: Pyramidal cells in layer 2 of the
entorhinal cortex. 3: Pyramidal cells in layer 3 of the entorhinal cortex. The thick lines above the cell bodies represent the dendrites. The numbers
of neurons in different parts of the hippocampal trisynaptic circuit in humans (Rogers Flattery et al., 2020) are shown in (a), and indicate very
many dentate granule cells, consistent with expansion encoding and the production of sparse uncorrelated representations prior to CA3
(Rolls, 2016b, 2021a).

610 ROLLS ET AL.
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F IGURE 2 Simulation of neocortical “what” and “where” inputs to the hippocampus for the storage of episodic memory, and for the recall of
“what” (object or face) and “where” (spatial view) information back to the “what” and “where” neocortex. The pyramidal cell bodies are shown as
triangles, the dendrites as the thick lines above the cell bodies, and the axons as thin lines terminated with an arrow. The numbers of synapses
shown are the numbers on any one neuron. The backprojection pathways for memory recall are shown in dashed green lines and in red the CA3
recurrent collaterals via which “what” and “where” representations present at the same time can be associated during episodic memory storage,
and via which completion of a whole memory from a part can occur during recall. All synapses are associatively modifiable except for the Dentate
Gyrus (DG) mossy fiber (mf ) synapses on the CA3 pyramidal cells. The dentate granule cells, the CA1 cells, and the entorhinal cortex inputs from
the neocortex operate as competitive networks. The CA3 cells operate as an autoassociation attractor network to implement completion. The
backprojection connections shown in green operate as pattern association networks (Rolls, 2021c). At the top, the central image shows what
might be stored; the right image shows the recall cue, and the network then recalls in the Where neocortex where that face was in the scene
shown on the left. This is what the network performs, and is typical of episodic memory in which the locations of faces or objects in a scene are
remembered (after Rolls (2023c)).
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neurons. Although the dilution in the neocortex is probably close to

10 (Rolls, 2016a, 2023b), the value of 5 enables the effects of dilution

to be examined in a network that is not too large. Sparse binary pat-

terns are used throughout, as the capacity of this system is easier to

analyze than a system with graded firing rates for each pattern to be

stored and recalled (Rolls & Treves, 1990; Treves, 1990, 1991b;

Treves & Rolls, 1991). To achieve this, threshold-binary neurons were

implemented, with the sparseness set to achieve the sparseness

shown in Figure 2 for each brain region, and a rate implementation

was used. The rate implementation of the pattern association, attrac-

tor, and competitive networks was as described by Rolls (2016a,

2023b), where sample Matlab code for each of these classes of net-

work is made available (see Code Availability statement). Code of that

general type was used in the rate simulations described here, and the

equations are provided in Appendix S1.

2.1.1 | Neocortex

This receives the inputs to the whole system. The neocortical inputs

are defined as sparse binary random patterns. Each pattern, for exam-

ple pattern 1, consisted of a vector of binary firing rates with values

of 0 or 1, with the elements set to 1 being chosen randomly for each

pattern, and to achieve a sparseness of the representation with the

values shown in Figure 2. As these are binary representations,

the sparseness is simply the proportion of 1s in the whole vector

(Rolls, 2023b). Separate “what” and “where” inputs are provided. The

model learns to associate each pair of “what” and “where” inputs.

When tested by presenting only a “what” input pattern, the network

recalls the neocortical “where” pattern that was associated with it.

During storage, the neocortex neurons pass on their activity to

the entorhinal cortex; but also learn to associate whatever backpro-

jected input to the neocortex is being provided from the entorhinal

cortex using pattern association learning.

During recall, the backprojections to the neocortex from the

entorhinal cortex enable, by pattern association, recall of the correct

memory pattern to be recalled in the neocortex. For simplicity, the prin-

ciples involved are illustrated without including in this simulation the

parahippocampal / perirhinal stages of processing shown in Figure 1.

2.1.2 | Entorhinal cortex

Each entorhinal cortex network learns representations of neocortical

what and where representations based on previous experience using

competitive learning (Rolls, 2023b). [This learning does not produce

the place cells found in the rodent medial entorhinal cortex (Fyhn

et al., 2004; Kraus et al., 2015; Moser et al., 2014, 2015, 2017), but is

a key part of the feature combination learning process by which the

spatial view cells found in the primate “Where” system could be

learned (Rolls & Treves, 2024). This process involves a series of com-

petitive networks like those found in a model of the “What” ventral

visual system VisNet (Rolls, 2021d, 2023b), but with little

convergence from stage to stage to enable the spatial representations

to be maintained through the hierarchy (Rolls, 2024b). The spatial fea-

ture combination neurons learned by this system (cf. De Araujo

et al., 2001) are bound together by the use of a continuous attractor

network as in previous research (Stringer et al., 2005).] During the

learning of a new episodic memory, these representations are passed

forward to the dentate and CA3. Also during learning/storage, the

backprojection input is received from CA1, and this is associated using

pattern association learning with whatever firing in present in the

entorhinal cortex.

During recall, the backprojected input from CA1 retrieves the cor-

rect set of firing in the Entorhinal cortex “What” and “Where” neu-

rons, due to the previous pattern association learning.

2.1.3 | Dentate granule cells

These learn sparse representations of neocortical what and where rep-

resentations based on previous experience using competitive learning

(Marr, 1971; McNaughton & Morris, 1987; Rolls, 1987, 2016b; Rolls &

Treves, 2024). During storage of a new episodic memory, the dentate

granule cells receive inputs from both entorhinal cortex networks, and

apply competition to produce a sparse representation in the dentate

granule cell population for each memory pattern to pass on to CA3 via

the mossy fibers.

2.1.4 | CA3 network

This operates in the theory (Hasselmo et al., 1995; McClelland

et al., 1995; McNaughton & Morris, 1987; Rolls, 1987, 1989b; Rolls &

Treves, 2024; Treves & Rolls, 1992, 1994) as an attractor network to

enable a whole memory to be completed during recall from any part.

During storage, the strong non-modifiable very sparse mossy fiber

synapses connecting the Dentate Granule cells to the CA3 network

force a new random set of CA3 neurons to be activated during learning.

The entorhinal cortex inputs, which will be for a new memory, do not

activate CA3 neurons during the storage of an episodic memory. The

mossy fiber inputs are not used during recall (see Treves & Rolls, 1992)

when the parameter dg is set to 0. The possible roles of acetylcholine in

this modulation of the efficacy of the mossy fibers inputs to CA3 com-

pared to the entorhinal inputs are discussed elsewhere (Hasselmo

et al., 1995; Hasselmo & McGaughy, 2004; Vogt & Regehr, 2001;

Zaborszky et al., 2018). During storage, the recurrent collateral synapses

in the attractor network are learned by standard Hebbian associative

learning, to set up the attractor network connections. Also during stor-

age, a pattern association is learned between the entorhinal cortex

inputs and the CA3 cells that are firing. This will be used later for recall

(Treves & Rolls, 1992). Because there are “what” and “where” entorhi-

nal connections with the CA3 network, this is effectively how the

“what” and “where” components of an episodic memory become asso-

ciated with the firing of CA3 neurons that represent “what” and

“where.” It is likely, because of the diluted connectivity in the system,
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that somewhat different CA3 neurons become linked with “what” and

others with “where,” enabling CA3 pattern completion to be useful.

During retrieval, the entorhinal cortex inputs to the CA3 neurons

using pattern association retrieval start the recall process in CA3,

which continues to completion using the CA3–CA3 recurrent collat-

eral autoassociation attractor property.

2.1.5 | CA1 network

This operates as a competitive network to categorize the firing

received from CA3. Although the separate components of episodic

memory (e.g., “What” and “Where”) must be separately represented

in CA3 implicitly to enable completion, the separate components need

no longer be kept separate for the recall process back to the neocor-

tex, so can be recategorized as a sparse and more compressed recall

cue (Rolls & Treves, 1994, 2024; Treves & Rolls, 1994). During stor-

age, competitive network learning takes place.

During retrieval, the CA1 network provides the sparse and cate-

gorized representation produced in it via its CA3 inputs, and passes

this categorized output to be used by the entorhinal cortex to recall

the entorhinal cortex firing that was present during storage. After

that, the entorhinal cortex backprojections to the neocortex recall the

correct set of firing in the neocortex by pattern association backpro-

jection recall.

In the brain, there is a great expansion of cell numbers from CA1

back to the neocortex, and the multiple-stage recall process from CA1

back to the neocortex allows the number of neurons to increase at

each stage, while at the same time allowing the number of backprojec-

tion synapses to each neocortical neuron to be kept limited at approx-

imately 10,000 synapses onto each neuron (Rolls, 2016a, 2023b;

Rolls & Treves, 1994, 2024; Treves & Rolls, 1994). The expansion of

neuron numbers is not included in this simulation as it is not essential

to the storage and recalls processes themselves, but may be useful to

enhance the memory capacity provided for by the CA1 to entorhinal

connections (Rolls & Treves, 2024).

For the purposes of these simulations, the entorhinal cortex to

CA1 connections which are smaller in number than the CA3 connec-

tions to CA1 was not modeled, partly because there is evidence that

they are relatively weak and are unlikely to be the key driver of CA1

activity as discussed elsewhere (Rolls & Treves, 2024). [Although the

evidence suggests that the entorhinal to CA1 connections are weak

compared to the CA3 inputs to the CA1 neurons (Rolls &

Treves, 2024; Zhao et al., 2020), there is a treatment of them as a

competitive network (Hasselmo & Wyble, 1997).]

2.2 | Integrate-and-fire model of the neocortical–
hippocampal system

The aims of these simulations are to estimate the time from present-

ing a recall cue to, for example, “What” neocortex, to produce com-

pletion in CA3 and recall of the rest of the episodic memory in, for

example, “Where” neocortex; and to investigate the stability of the

dynamics in this whole system shown in Figure 2.

The integrate-and-fire model was set up using synaptic channels

for AMPA, NMDA, and GABAA receptors which was developed for

attractor networks (Brunel & Wang, 2001), and has been used and

developed considerably (Deco et al., 2009, 2013; Deco & Rolls, 2006;

Loh et al., 2007; Rolls, 2023b; Rolls et al., 2010a, 2010b, 2012;

Rolls & Deco, 2010, 2015a, 2015b, 2016; Wang, 2002). The details of

the biophysical implementation are provided in Appendix S1.

The whole network that was implemented with integrate-and-fire

neurons was the same as that shown in Figure 2 for the rate model

with the same parameters. Because this was a large network with

7 modules, each with 5000 excitatory neurons and 1250 inhibitory

neurons (43,750 neurons, more than 288,750,000 synapses) it was

implemented on a GPU with Pytorch. It is noted that a relatively

large-scale simulation of this type is needed with integrate-and-fire

neurons with the low firing rates typical of hippocampal neurons, as

otherwise the stochastic almost Poisson firing times of individual neu-

rons and the sparseness of the representations would mean stochasti-

city in the readout of the results produced. (The close to Poisson

distribution of spike times for a given mean rate is helped in simula-

tions of this type (Brunel & Wang, 2001) by the Poisson background

input to each neuron described in the Methods.) The connectivity

from the excitatory to the inhibitory neurons and vice versa within a

module was complete, and the dilution of the connectivity between

modules was as shown in Figure 2, simulating the diluted connectivity

in the cortex.

The implementation of the attractor network for CA3 in the

integrate-and-fire simulation was relatively straightforward, at least

for testing after the synaptic weights had been learned, in view of the

research cited above.

The implementation of competitive networks (key parts of the

medial and lateral entorhinal cortex, the dentate, and CA1) during

learning was more difficult because of the need to control the sparse-

ness of the representation, and because of the stochastic nature of

the incoming spikes to each synapse, which required at least 100–

250 ms of firing each time that input was being received to estimate

the mean presynaptic and postsynaptic firing rates necessary for the

associative synaptic update using a Hebb rule. (It is suggested that in

the brain, the long time constant of NMDA synapses, 100 ms, might

be relevant to this process.) These constraints made the training using

integrate-and-fire neurons produce stochastic estimates for the syn-

aptic weight changes, and was prohibitively slow. There is therefore a

great difficulty in integrate-and-fire network simulations without the

very large-scale neuron and synapse numbers found in the brain that

relate to the effects of the stochasticity which is introduced into the

synaptic weights unless the implementation is very large. We there-

fore adopted the method, which we now propose is very useful, of

training the synaptic weights with rate neurons (as described in

Section 2.1), and then importing these synaptic weights into an

integrate-and-fire version of the same architecture. It was found that

this worked well, with considerable work then still required to set up

stable dynamics of the whole network, as described next.
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A key issue of the network simulated in Figure 2 arises as follows.

When a recall cue is applied for example to the “What” neocortex,

the firing proceeds to CA3 where completion occurs in the attractor

network, and then via the return backprojection pathways (green in

Figure 2), firing via CA1 and the entorhinal cortices reaches the neo-

cortical “Where” module, and the neocortical “What” module. But

because this is a whole dynamical system with continuous dynamics,

the signal then returns back from the neocortex to the hippocampus,

and then returns to the neocortex, continuously. It is proposed that

this is a long-loop system (Rolls, 2023b) that contributes to the gener-

ation of the whole memory being recalled well to the neocortex. This

is an important concept and complements what can be implemented

by CA3 to potentially over a short period of time produce even better

recall by the “long-loop” positive feedback.

But the issue then arises that the “long excitatory loop” from the

neocortex to the hippocampus and back can result in runaway posi-

tive feedback which results in very high firing rates throughout the

circuit. It was found to be possible to control this by a combination of

a number of methods, as follows.

One method was to introduce neuronal adaptation into the neu-

rons in the circuit. Adaptation is a known property of neocortical and

hippocampal neurons (Liu & Wang, 2001; Rolls, 2023b; Rolls &

Deco, 2015b). The method adopted was the spike-frequency adapta-

tion mechanism using Ca2+-activated K+ hyper-polarizing currents

(Liu & Wang, 2001), and is described in Appendix S1, and has been

used before in a number of applications (Hasselmo et al., 1995; Rolls &

Deco, 2015a, 2015b). Its parameters were chosen to produce moder-

ate to strong spike frequency adaptation, with [Ca2+] initially set to be

0 μM, τCa = 300 ms, α = 0.002, VK = �80 mV, and gAHP = 0–150 nS

(where 0 nS produces no adaptation). As a result of these investiga-

tions, it is proposed that adaptation, whether neuronal (Liu &

Wang, 2001) or synaptic (Kern & Chao, 2023; Mongillo et al., 2008;

Rolls et al., 2013; Tsodyks & Markram, 1997), is a major contributor to

the stability of cortical circuitry, which necessarily with the local excit-

atory recurrent connectivity between pyramidal cells and the long-loop

excitatory connectivity (Rolls, 2016a, 2023b) is liable to runaway

excitation.

A second method is to increase local inhibition. In the model

attractor network (Brunel & Wang, 2001; Rolls & Deco, 2010,

2015b; Wang, 2002), the default value for the excitatory to inhibi-

tory (E to I) neuron connectivity, and for the inhibitory to excitatory

connectivity, is 1.0. This Excitatory to Excitatory value can be

increased between a population of excitatory neurons to for example

2.1 to form an attractor population (Brunel & Wang, 2001; Rolls &

Deco, 2010, 2015b; Wang, 2002). It was found in this investigation

that increasing the E to I connectivity to, for example, 9 in some

modules could help to stabilize the whole network, and was espe-

cially important in CA3 and CA1. Indeed, it is proposed here that

inhibition may be especially high in CA3 and CA1 in the hippocam-

pus to keep the firing rates low, thereby helping to minimize the risk

of runaway excitation. The exact values for all the parameters are

provided in Appendix S1. Inhibitory feedback to control the level of

excitatory neuron firing was used in an attractor network in a rate

simulation previously (Hasselmo et al., 1995), and its use is essential

in integrate-and-fire networks of the type used here, with the new

point made here that it may need to be especially strong in the

hippocampal CA3 and CA1 networks to help control runaway excita-

tion produced by the long loop (neocortex–hippocampus–neocortex)

dynamics described here.

A third method to control the firing rates of the excitatory neu-

rons in this cortical–hippocampal–cortical system and to prevent run-

away excitation was to use presynaptic adaptation or depression in

which each spike in a presynaptic terminal depletes the amount of

transmitter, leaving less to be released by the next spike (Mongillo

et al., 2008). The amount of transmitter left is represented by x, which

starts with a value of 1 and has a minimum value of 0. x modulates

the corresponding synaptic weight to model the reduction in the

amount of transmitter released. x recovers with a time constant τD of

200 ms, with the mechanism and implementation described in

Appendix S1 and elsewhere (Mongillo et al., 2008). Presynaptic adap-

tation was found to be very useful in the integrate-and-fire simula-

tions in minimizing runaway excitation in this system, in enabling the

other parameters such as the connection strengths between the dif-

ferent networks to be found, and to enable the rather low firing rates

typical of hippocampal neurons (typically < 20 spikes/s for the maxi-

mal response (Georges-François et al., 1999; Robertson et al., 1998;

Rolls et al., 1997; Rolls et al., 1998)) to be modeled. Presynaptic adap-

tation or depression may help in part by mimicking the top, flatter,

part of a sigmoid activation function.

A fourth method was to apply the recall stimulus, for example the

“What” neocortex module, for only a short time period, with 50 ms

found suitable. A short period of high firing could be produced in the

cortex by the adaptation mechanisms described above.

The simulation protocol was to simulate 200 ms of spontaneous

activity, and to follow this with a recall cue presented for time = 200

to time = 250 ms to the NcWhat neurons with a rate of an extra

6 Hz above the Poisson spontaneous input to each neuron of 3 Hz

produced through the 800 synapses for these inputs on each neu-

ron, following the general approach of Brunel and Wang (2001). The

actual values for the spontaneous rates etc are evident in Figures 4

and 5, and we ensured that there was some spontaneous firing

before any recall cue was applied as some spontaneous firing

is important in the rapid recall that occurs in biologically realistic

attractor neuronal networks (Battaglia & Treves, 1998; Panzeri

et al., 2001; Rolls, 2023b). The simulation was then allowed to run

until 1 s had elapsed by which time a firing rate typical of those in

the hippocampus had been achieved, and a decrease back to lower

rates had started, due in part to the adaptation that was implemen-

ted as described above. The measure of performance was whether

the correct neurons, identified by their indices from the Rate simula-

tion, had increased firing in the NcWhere module. A low rate for the

recall firing was considered satisfactory, for this could trigger a local

recurrent attractor network in the neocortex (NcWhere) module.

The rate network was trained with randomly chosen populations of

binary neurons for each memory, one population in neocortical What

and the other in neocortical Where. The figures show the firing of
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the neurons trained for memory pair 1 (called pattern 1) when pat-

tern 1 is applied as a recall cue only to the NcWhat module. The fig-

ures show as a control the firing of the neurons that had been

trained for memory pattern 2, to illustrate that the firing is much

greater when pattern 1 is applied than for the neurons trained with

pattern 2. As the whole network is symmetric, it can be tested with

memory pattern 2 as an input to, for example, NcWhere, and the

correct firing is produced appropriate for pattern 2 in NcWhat.

3 | RESULTS

3.1 | Rate simulation of the neocortical–
hippocampal architecture shown in Figure 2
for memory storage and recall

One aim was to investigate key parameters that influence the number

of memory sets or patterns of neocortical neuronal firing that can be

stored in the hippocampus and later recalled back to the neocortex.

The architecture is shown in Figure 2, which reflects approximately

the relative numbers of neurons and synapses per neuron in different

parts of the neocortical–hippocampal circuitry. The paradigm was to

train the network with randomly generated pairs of binary input pat-

terns presented simultaneously to the What and Where neocortical

modules, and then later to present only a What neocortical retrieval

cue, and measure whether utilizing completion in CA3 and the modi-

fied backprojection synapses shown in green in Figure 2, the other

part of the memory could be correctly recalled to the neocortical

Where module. The second aim was to train synaptic weights in the

matrices in each of the modules in Figure 2 so that these synaptic

weights could be transferred to an integrate-and-fire simulation. Then

in the integrate-and-fire simulation the time could be measured for

the recall of information to the neocortical Where module after a

retrieval cue was applied to the neocortical What module.

The architecture with the parameters shown in Figure 2 scaled

down by 5 (with thus C = 200 synapses per neuron for most of the

networks shown in Figure 2, except for the entorhinal to CA3 projec-

tion which was 60 with this scaling down by 5) was able to store

“What” – “Where” associated random binary patterns of neuronal

activity with perfect recall of “Where” components to NcWhere when

provided only with the “What” component as an input to the neocor-

tex with 50 patterns. With 100 patterns the neocortex ‘Where’ infor-
mation was recalled with a mean correlation across the patterns

of 0.895.

Although the capacity of the CA3 autoassociation network is

known analytically (Treves & Rolls, 1991), and of the pattern associa-

tion networks (Rolls & Treves, 1990) used in recall (from the entorhi-

nal cortex to CA3, from CA1 to the entorhinal cortex, and from the

entorhinal cortex to the neocortex), the capacity of the whole

neocortex–hippocampus–neocortex system has not been tested

before. To measure the capacity of the whole neocortex–hippocam-

pus–neocortex system, the whole network shown in Figure 2 scaled

down by 5 was trained with paired combinations of neocortex “What”

and “Where” random binary patterns, and then the network was

tested with only the neocortex “What” pattern used as a recall cue,

and recall was measured in the neocortex “Where” network (see

Figure 2). It was found that one limitation on the memory capacity of

the whole network was the number of synapses from the entorhinal

cortex to the CA3 neurons (estimated to be in the order of 3600 in

the rat (Amaral et al., 1990; Rolls & Treves, 1998; Treves &

Rolls, 1992)), set at 60 for these simulations scaled down by 5 from

what is shown in Figure 2 to reflect what is found in the hippocampus

(Rolls & Treves, 1994; Treves & Rolls, 1994). This was shown by

increasing the number of synapses from the entorhinal cortex to each

CA3 neuron to 200, for which the NcWhere retrieval pattern correla-

tion was now 0.990 with 50 pattern pairs. This connectivity from the

entorhinal cortex to CA3 operates as a pattern association network

(Rolls, 2023b; Rolls & Treves, 1994, 2024; Treves & Rolls, 1994), and

the capacity found here is consistent with the analysis of the storage

capacity of a pattern association network with sparse coding shown in

Equation 1 (Rolls, 2023b; Rolls & Treves, 1990). The maximum num-

ber of patterns, pmax, that can be stored and correctly retrieved in a

pattern association network is approximately

pmax ¼
C

aolog 1
ao

� �h i ð1Þ

where C is the number of synaptic connections onto each neuron and

ao is the sparseness of the output representation (Rolls &

Treves, 1990).

To examine more fully the effect of loading on the retrieval of

memories to the Where neocortex from the What neocortex via the

hippocampus, Figure 3 (blue, o) shows the NcWhere recall correlation

as a function of the number of patterns stored during training in the

whole network as just described. It can be seen that the recall, mea-

sured by how high the correlation is of the recalled memory with what

was stored, starts to degrade when the number of patterns increases

beyond 200. This is exactly what is expected, for the storage capacity

estimated using the analytically derived Equations 1 and 2 is approxi-

mately 250 memory patterns with 200 synapses per neuron and the

sparseness of the representations used. (These simulations were run

with the architecture shown in Figure 2 scaled down by 5 in terms of

the number of neurons and the number of synapses per neuron,

except that for these simulations the number of synaptic connec-

tions from the entorhinal cortex to CA3 was also set to 200, to test

whether given this, the whole system could be trained up to a the-

oretical capacity.)

To gain further insight into the operation of the whole

neocortex–hippocampus–neocortex system, Figure 3 also shows the

correlations of the dentate gyrus firing rates (green, x) when only

the neocortex “What” input was applied compared to the firing after

training when both the neocortex What and Where inputs were

applied. Because the dentate granule cells are modeled as a competi-

tive network, applying just half the inputs from the entorhinal cortex

(entorhinal What) produces firing in the dentate that is only correlated
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about 0.5–0.7 with what was expected when both the neocortex

What and Where inputs are applied.

Figure 3 shows that CA3 does operate as an attractor network, in

that when only the neocortex What input is used as a recall cue, for

loading up to approximately 150, the correlation of CA3 firing with

what is expected was high (0.79–1 depending on the loading). This

was confirmed by disabling the CA3 to CA3 recurrent collateral con-

nectivity that implements the attractor network. When the loading

was 200 or more, the performance of CA3 as an attractor network

then failed, and recall correlated only 0.5–0.66 with what was

expected. This is consistent with the analytic approach, which shows

that the memory capacity of an attractor network in terms of p the

maximum number of patterns that can be stored and correctly

retrieved is approximately

p¼ Ck

a log 1
a

� �� � ð2Þ

where C is the number of recurrent collateral synaptic connections

onto each neuron, a is the sparseness of the representation, and k is a

factor that depends weakly on the detailed structure of the firing rate

distribution, on the connectivity, and so on, but is roughly in the order

of 0.2–0.3 (Rolls, 2023b; Treves, 1991a, 1991b; Treves & Rolls, 1991).

For 200 synapses per neuron, Equation (2) evaluates to approximately

270, so that the fall in the CA3 recall correlations when the number of

patterns stored is about 200 (Figure 3) and above is consistent with

the analysis.

Figure 3 also shows that the pattern association implemented by

the backprojections from CA1 to entorhinal cortex, and from entorhi-

nal cortex to the neocortex, can improve the final recall in the neocor-

tex (blue, o) above what is found in CA3 alone, as expected because

these backprojections are modeled as pattern association networks,

and the capacity is as shown in Equation (1).

In summary, the simulations illustrated in Figure 3 show that the

capacity of the whole neocortex–hippocampus–neocortex system is

high and what is expected analytically given the capacity limits of each

of the separate networks in the system illustrated in Figure 3. That is,

the capacity of the whole neocortex–hippocampus–neocortex system

is very similar to the capacity of any single network in the system. In

this context, the number of synapses from the entorhinal cortex to

any one neuron in CA3 may be the limiting capacity of the whole sys-

tem, and further research on the number of these synapses on any

one CA3 neuron in different species will be of great interest.

3.2 | Integrate-and-fire simulation of the
neocortical–hippocampal architecture shown
in Figure 2 for memory storage and recall

One aim of these investigations is to measure the time from applying

a retrieval cue to the neocortex (e.g., the What module NcWhat in

Figure 2), to retrieving the rest of the memory in another part of the

neocortex (e.g., NcWhere in Figure 2). Further aims are to investigate

factors that may enable the whole dynamical system to operate stably

given that once some recall has occurred back to the neocortex, the

neocortical signals are fed back into the hippocampus, and can return

then back to the neocortex. This may be advantageous for what we

will term “long-loop recall,” but has major risks of the positive feed-

back in the long loop leading to runaway excitation that could contrib-

ute to temporal lobe epilepsy due to excessive neuronal firing.

The operation of the integrate-and-fire simulation of the

neocortical–hippocampal–neocortical circuitry for recall is shown in

Figures 4 and 5. To illustrate the time course, the whole network was

trained in the Rate model with pairs of random binary patterns applied

to the neocortex What and Where modules. Then in the integrate and

fire model, one of the patterns was applied to the neocortex What

module, and recall was measured after passage through the hippo-

campal CA3 and CA1 system back to the neocortex Where Module

(see Figure 2). Figure 4a shows the effects of the 6 Hz recall cue

applied from time = 200 until time = 250 ms to the NcWhat neurons

for memory pattern 1. The mean rate of the NcWhat neurons

F IGURE 3 Capacity of the neocortex–hippocampus–neocortex
network. After training with paired combinations of neocortex
“What” and “Where” random binary patterns, the network was tested
with only the neocortex “What” pattern used as a recall cue, and
recall was measured in the neocortex “Where” network (see Figure 2).
The capacity was measured with the network shown in Figure 2
scaled down by 5 to have C = 200 synapses per neuron and with
N = 1000 neurons in each network. The abscissa shows the number
of random binary patterns presented to NcWhat with which the
whole network was trained. The ordinate neocortex plot (o, blue)
shows the mean correlation of the memory patterns recalled in
NcWhere with what was expected for both NcWhat and NcWhere as
the recall cue. The ordinate CA3 plot (*, red) shows the mean
correlation of the memory patterns recalled in the CA3 cells with
what was expected. The ordinate DG plot (x, green) shows the mean
correlation of the memory patterns recalled in the dentate granule
cells with what was expected. The critical capacity of each network
alone is calculated to be close to 250 with C = 200 synapses per
neuron and the sparseness a = 0.05 (see Equations 1 and 2).
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allocated to recall pattern 1 (blue in Figure 4a, labeled “Recall”)
increased within ms to approximately 80 spikes/s, and then decreased

when the stimulus was removed. The firing rate would have

decreased to the mean firing rate of approximately 1 spike/s without

the feedback effects coming back to NcWhat from the hippocampal

circuitry. The neurons allocated to memory pattern 2 (red in

F IGURE 4 Integrate-and-fire simulation of the dynamics of the neocortical–hippocampal system illustrated in Figure 2. Left panels: The
firing rates are shown for the neurons trained for pattern 1 (blue), pattern 2 (red), and the inhibitory neurons (yellow) for the “What”
neocortical module (NcWhat) to which pattern stimulus 1 was applied at time = 200 ms, and for the lateral “What” entorhinal cortex module,
and for the CA3 module. Rastergrams for 40 neurons chosen at random from the population trained for pattern 1 (“Recall”), and for the

population trained to pattern 2 (“Other”) are shown. Because pattern 1 was applied to NcWhat, the firing rates are higher for all the neurons
that should be activated by memory pattern 1 (blue), than for the neurons that were trained for pattern 2, indicating correct operation. For the
integrate-and-fire simulations, similar results were obtained with 2 or 20 memory pattern pairs (“what” and “where”) stored in the network.
The plot of “x” for some networks shows the extent of any presynaptic adaptation, where a value of 1 indicates no adaptation, and the
maximal adaptation occurs as x approaches 0. The firing rate plots were smoothed with a 5-point filter, and the recall cue actually started
at 200 ms.
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Figure 4a, labeled “Other”) hardly increased their firing, showing

that the effects were selective as expected for the neurons trained

to memory pattern 1. In all cases in this and subsequent Figures,

the other excitatory neurons hardly altered their rates during the

memory recall, again showing that the effects were selective to

the training patterns. Because the timing and selectivity can be

measured with just two training memory patterns, that was the

number used in the integrate-and-fire simulations, though the rate

model itself could be tested up towards the theoretical capacity as

described above.

The next stage of the circuitry is the lateral entorhinal cortex

What module, and as it had been trained as a competitive network

(Rolls, 2023b), the Recall neurons responded rapidly, within approxi-

mately 20 ms, to the input from NcWhat (Figure 4b). The sparseness

of the representation here is 0.05, and with that greater proportion of

neurons responding to the input, an increase in the firing of the

F IGURE 5 Integrate-and-fire simulation of the dynamics of the neocortical–hippocampal system illustrated in Figure 2. Left panels: The firing
rates are shown for the neurons trained for pattern 1 (blue), pattern 2 (red), and the inhibitory neurons (yellow) for the CA3 module, for the
medial entorhinal cortex “Where” module, and for the neocortical “Where” module (NcWhere). Conventions as in Figure 4. Because pattern
1 was applied to NcWhat, the firing rates are higher for all the neurons that should be activated by memory pattern 1 (blue), than for the neurons
that were trained for pattern 2, indicating correct operation right through CA1, EntoWhere to NcWhere (see text).
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inhibitory neurons is also clear. The neurons that are related to mem-

ory pattern 2 had a small increase in firing (red) due to feedback

effects round the hippocampal circuit, but the firing was still selective

for the memory pattern 1 neurons (blue).

The next stage of the circuitry during recall is via the lateral ento-

rhinal What module associatively modified synapses to the CA3 neu-

rons, which operate as an autoassociation attractor network. They fall

into their basin of attraction quickly, within approximately a further

20 ms (Figure 4c), in line with the theory that an integrate-and-fire

attractor network can retrieve the whole memory from one part

within perhaps 2 or a few time constants of the synapses (Battaglia &

Treves, 1998; Panzeri et al., 2001; Rolls, 2023b; Rolls & Webb, 2012;

Treves et al., 1997; Webb et al., 2011). The latency (measuring from

the firing when it has reached approximately 1/3 of its maximum and

from the response in the NcWhat module) is approximately 40 ms.

The next stage of circuitry is from CA3 to CA1, and because this

is implemented as a competitive network, the recall is within approxi-

mately 20 ms (Figure 5a), and the elapsed time since the NcWhat

response was now approximately 60 ms.

The next stage of circuitry is from CA1 to the medial entorhinal

“Where” cortex, and because this is implemented as a competitive

network, the recall is within approximately 15–20 ms (Figure 5b), and

the elapsed time since the NcWhat response was now approxi-

mately 90 ms.

The final stage of the circuitry is from the medial entorhinal

“Where” cortex to the “Where” neocortex (NcWhere), and because this

is implemented as a competitive network, this recall is potentially fast,

but because the firing rates were kept low, the recall took a little longer

(Figure 5c), and the elapsed time since the NcWhat response to the

early part of a NcWhere response was now approximately 100 ms. The

firing rate in this module was relatively low because the synaptic back-

projection connection strengths to the neocortex were set relatively

low, to minimize the effects of the positive excitatory feedback to pro-

duce runaway excitation, and because forward inputs must always dom-

inate cortical firing. In more detail, the backprojection connections

needed for memory recall and top-down attention need to be much

smaller than the forward connections, so that the forward inputs, when

present dominate the firing (Deco & Rolls, 2004, 2005a, 2005b;

Rolls, 2023b; Rolls et al., 2012; Rolls & Deco, 2010, 2015a). The con-

cept is that this low firing rate for the recall from the hippocampus to

the neocortex is sufficient to then trigger a neocortical attractor net-

work response to add to the recall process.

The key finding is that the time for the neocortical–hippocampal–

neocortical loop to recall memory to the neocortex is approximately

100 ms. This is sufficiently fast that the backprojection-firing is suffi-

ciently rapid during the learning of the episodic memory for the back-

projections to reach the neocortex from the hippocampal system

sufficiently fast so that the neocortical neurons are still active in

response to their input, allowing the backprojection synapses to be

modified by pattern association learning to implement memory recall

from the hippocampus to the neocortex, as in the Rolls and Treves

theory of the hippocampus (Rolls, 1987, 1989a; Rolls & Treves, 1994,

2024; Treves & Rolls, 1994).

Another feature of what is shown in Figures 4 and 5 is the late

activity at approximately 310 ms after the NcWhat module has

started to respond. Although the CA3 continuing firing in its attractor

state contributes to this, this later firing after the recall has been

produced is partly due to positive feedback from the hippocampus to

the neocortex by the synapses from CA1 to the entorhinal cortex, and

from the entorhinal cortex to the neocortex. This was shown by dis-

abling the CA1 to entoWhat, and entoWhat to NCWhat, backprojec-

tion synapses, which left the recall to entoWhere intact, but abolished

the high firing rates that tended to develop after approximately

100 ms. It is proposed that the effects of these backprojection synap-

ses contribute to a long-loop recall effect maximizing the completion

of what is recalled in the neocortex, and complementing the

completion provided by CA3. However, what was found in the

integrate-and-fire simulations is that the backprojection effects must

be carefully controlled, to prevent runaway excitation in the

neocortex–hippocampus–neocortex circuit. The requirement became

very clear as a result of these integrate-and-fire simulations.

The integrate-and-fire simulations also enabled the investigation

of how the long-loop positive feedback could be controlled. One way

was to have high inhibition in CA3 and CA1, and this was implemen-

ted by increasing the E to I neuron connection strength ratio from its

default value of 1 to 9 for CA3, and to 7 for CA1. This helped to keep

the firing rates of these CA3 and CA1 hippocampal neurons low

(Figures 4 and 5), just as they are in the brain, and, it is proposed, to

help prevent runaway long-loop excitation. It was also found useful

to increase the E to I connection value to 15 for the entorhinal cortex.

A second way to control the long-loop positive feedback that was

found to be important in the integrate-and-fire simulations was to

introduce temporal adaptation into the circuit. This was implemented

with neuronal adaptation using the gAHP mechanism for excitatory

neurons, which was set to quite a high value of gAHP (150 nS by

default and 450 ns for the entorhinal cortex, and to facilitate continu-

ing firing to 0 nS for CA3) to show clearly the adaptation in the

figures.

A third way to control the long-loop positive feedback was to

limit the duration of the recall cue applied to NcWhat, in this case

to 50 ms. This may be implemented in part by the neocortical adapta-

tion described above.

A fourth way to control the long-loop positive feedback that

was found to be useful in the integrate-and-fire simulations was to

keep the recall cue applied to NcWhat to be relatively low, 6 Hz

extra firing for the NCWhat neurons in memory pattern 1 to act as

the recall cue.

4 | DISCUSSION

4.1 | Integrate-and-fire simulations
of neocortical–hippocampal–neocortical recall

Key findings with the integrate-and-fire simulations of neocortical–

hippocampal–neocortical recall were as follows.
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First, the time for recall to reach the neocortex round the

neocortex–hippocampus–neocortex loop was sufficiently fast, approxi-

mately 100 ms, for the backprojections from the hippocampal system

to the neocortex (green in Figure 2) to be firing while the neocortical

pyramidal cells are still being driven by the to-be-remembered input,

allowing pattern association to be learned between the backprojections

and the neocortical pyramidal cells.

Second, it was found in the integrate and fire simulation of recall

from the hippocampus that a long-loop attractor was also set up by

the neocortical–hippocampal–neocortical loop. This has the potential

advantage of feeding back information into the hippocampal system

to produce better completion in all relevant neocortical regions

(e.g., what, where, and reward, see Figure 1), and complementing the

completion implemented in CA3. Of course these two types of com-

pletion are different and complementary, in that because there is a

single attractor network in CA3 given the extensive range of the CA3

recurrent collaterals (McNaughton & Morris, 1987; Rolls, 1987,

1989a; Rolls & Treves, 1994, 2024; Treves & Rolls, 1994) (also mod-

eled by others (Hasselmo et al., 1995; Hasselmo & Wyble, 1997)) that

is clearly evident in primates (Kondo et al., 2009), the CA3 network

can associate any of its inputs with any others of its inputs, which is

required for “what,” “where,” and “reward” combination episodic

memory.

The role of the backprojection pathways from CA3 via CA1 to

the neocortex in improving recall is demonstrated by the model.

When the system is heavily loaded with many “What”–“Where”
patterns to be associated, recall may not be perfect in CA3, but

can become better by the time that the neocortex is reached

(e.g., Figure 3 for loadings less than 200). This can be understood very

clearly computationally, because the backprojection connectivity from

CA1 to the entorhinal cortex, and from the entorhinal cortex to the

neocortex, both act as pattern associators, which have exactly this

property (Rolls, 2023b).

Third, it was found in the integrate and fire simulation of recall

from the hippocampus that the long-loop attractor was potentially a

major problem for the operation of the neocortex–hippocampal–

neocortex system, because it made runaway excitation due to the

positive feedback between the excitatory neurons in the different

modules in this circuit a danger. We were able to show in the

integrate-and-fire simulations that several mechanisms may contrib-

ute to maintaining the whole system stable. One is high inhibition in

e.g. the CA3 and CA1 parts of the hippocampus (and during learning

probably in the dentate gyrus too), implemented by strong connectiv-

ity from excitatory to inhibitory neurons (E to I connections within

each module). This need may help to account for why the firing rates

of CA3 and CA1 pyramidal neurons are relatively low, typically less

than 15 spikes/s in primates (Georges-François et al., 1999;

Robertson et al., 1998; Rolls et al., 1997, 1998). A second mechanism

is temporal adaptation (see also Hasselmo et al., 1995), which was

found to be very important in controlling runaway excitation in the

neocortex–hippocampus–neocortex system. Indeed, it is proposed

that temporal adaptation, including neuronal and presynaptic adapta-

tion, is a key property of cortical including hippocampal neurons,

because it helps to maintain stability in local and long-loop inter-

module networks that are inherently unstable because of the

excitatory-to-excitatory connections (Rolls, 2023b). A third approach

that contributed to the stability of the whole neocortex–hippocam-

pus–neocortex system was keeping the application time for the recall

cue to be relatively short, which could be implemented in part by tem-

poral adaptation, whether neuronal (Liu & Wang, 2001) or synaptic

(Kern & Chao, 2023; Mongillo et al., 2008; Rolls et al., 2013;

Tsodyks & Markram, 1997) or both. A fourth approach was to allow

the recall stimulus applied to the neocortex to be not too strong so

that the firing rates were kept down to reasonable levels for the neo-

cortex, as shown in Figure 4a.

Fourth, it was difficult to train the whole network in the

integrate-and-fire implementation because the almost Poisson spike

times and relatively low firing rates meant that any estimate of the

presynaptic and postsynaptic terms needed to associatively modify a

synaptic weight tended to be noisy, so introducing stochastic noise

into the synaptic weights that were learned. Another problem of train-

ing in the integrate-and-fire implementation was that it therefore took

a long time, at least 250 ms, every time that a stimulus was presented,

to estimate the presynaptic and postsynaptic terms, and given the

considerable training that was needed, the computational time for

the simulations would have been enormously long. The solution that

was adopted was to train the synaptic weights with the rate model,

and then import the synaptic weights into the integrate-and-fire

model. That was a good solution to the issue. It is noted that although

much training was needed in the Rate simulation for the network,

once the weights had been learned, it would be easy to add a new epi-

sodic memory to the system in one training trial, provided that it con-

sisted of components, for example, a location and an object, that had

already been trained into the system. That is close to the distinction

between slow semantic learning, and fast learning of new associations

in the hippocampal system of the semantic components are already

present (McClelland et al., 1995, 2020).

4.2 | Rate simulations of neocortical–
hippocampal–neocortical memory storage
and recall

Key findings with the Rate simulations of neocortical–hippocampal–

neocortical recall were about how the dilution of connectivity in the

cortex affects the operation of this cortical circuitry, and about

the capacity of the whole system.

Diluted connectivity is a feature of cortical connections, and was

implemented in the investigations described here (Rolls, 2016a,

2023b). Diluted connectivity can have advantages in competitive net-

works, for it helps to break the symmetry between the neurons, and

helps the competitive network to stably allocate different input pat-

terns to be categorized by different neurons (Rolls, 2016b). Sparse

representations of the output neurons in the competitive network can

also help different categories to be learned to different input patterns

(Rolls, 2015, 2016a, 2023b).
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On the other hand, although pattern association networks can

operate reasonably well with diluted connectivity (Rolls, 2015; Rolls &

Treves, 1990), in part by reducing the probability of more than one

synapse between an input and output neuron (Rolls, 2015), the simu-

lations described here showed that if the representations in the pat-

tern association networks used for recall using backprojections

(e.g., CA1 to entorhinal and entorhinal to neocortex) had not only

diluted connectivity but also utilized sparse representations

(e.g., 0.01), then recall became poor. This was because the combina-

tion of missing synapses and sparse input patterns to the pattern

association network could result in poor activation of some output

neurons that should have been active in the recalled pattern.

We have then something of a conflict between the desired proper-

ties for competitive and pattern association networks. With diluted con-

nectivity, it can be advantageous to have sparse input patterns to be

categorized by competitive networks, but for pattern association net-

works with diluted connectivity, the input patterns should not be too

sparse. This leads to an interesting and potentially important implication

for understanding the design and operation of the neocortex. For the

forward connectivity in a hierarchically organized system such as sen-

sory neocortical systems (Rolls, 2016a) in which learning of new repre-

sentations is required, perhaps using competitive learning, it may be

advantageous to have sparse representations. The superficial layers of

the neocortex fit this computational function of learning new represen-

tations up through the neocortical hierarchy (Rolls, 2016a, 2023b). It is

therefore proposed that for this reason the superficial layers (2 and 3)

of the neocortex should utilize sparse representations. For the top-

down backprojections in a cortical hierarchy, it is likely for the reasons

just described, that to recall patterns of firing in earlier neocortical

regions as part of memory recall (Rolls, 2016a), not very sparse repre-

sentations could be advantageous in the deep layers of the neocortex

that provide the backprojections to the preceding neocortical region

used for recall. Thus it is proposed that representations in the deep

layers of the neocortex (5 and 6) should be less sparse than in the

superficial layers. It is indeed proposed that this is a design principle for

the neocortex, and provides one key reason why the neocortex uses

superficial and deep layers. The same argument applies to the entorhi-

nal cortex: it is proposed that the representations in the superficial layer

(especially 2) should be relatively sparse, whereas the representation in

the deep layer involved in backprojections used for recall (in this case

layer 5) should be less sparse, more distributed. This approach to under-

standing why the neocortex has superficial and deep layers comple-

ments earlier hypotheses (Rolls, 2023b; Rolls & Mills, 2017).

The rate simulations also showed that the bottleneck in terms of

storage capacity, the number of episodic memories that can be stored

and correctly retrieved, was in the entorhinal to CA3 connections

used to initiate recall firing in the CA3 network (Treves & Rolls, 1992).

This is in line with theoretical estimates for pattern association and

attractor networks, with the number of synapses per CA3 neuron

from the entorhinal cortex at 3600 in rodents, less than in other parts

of the system (e.g., 12,000 for the CA3-CA3 recurrent collaterals;

Rolls, 2023b; Rolls & Treves, 2024; Treves & Rolls, 1994). It is sug-

gested that in light of this, it would be important to obtain further

estimates of the number of synaptic connections from entorhinal cor-

tex neurons onto each CA3 neuron, especially in primates, as this sets

the limit of this pattern association recall capacity (Rolls, 2023b;

Rolls & Treves, 1990).

4.3 | Conclusions and synthesis

This research elaborates and makes more specific the theory that

recall of memories from the hippocampus to the neocortex can be

implemented by backprojection synapses that are modifiable at one

or more stages back to the neocortex that act as a pattern associator

trained by the conjunctive activity in the backprojection synapses and

the neocortical neurons firing to the memory that is being stored

(Rolls, 1989a, 1995; Rolls & Treves, 2024; Treves & Rolls, 1994). In a

sense, this mechanism provides a pointer to which neocortical neu-

rons should be activated during memory recall. It had been recognized

before this theory that a pointer was needed even though no theory

of its implementation was available (Teyler & DiScenna, 1986). The

finding emphasized here that the hippocampus can maintain activity

for at least a short time after stimuli are removed in two or several

more distant cortical systems (here “What” and “Where”) because of

continuing backprojection activity to them leads to the proposal that

this pointer-like binding or coupling computation could be a way in

which the hippocampus is involved in helping to form new neocortical

semantic memories, by holding online continuing activity in distant

neocortical areas for particular representations, thereby helping the

neocortex to reorganize its semantic representations.

The research also shows with the integrate-and-fire simulations

that the feedback from the hippocampus is sufficiently fast, within

100 ms, for the learning required for this theory of hippocampal recall

to the neocortex (Rolls, 1989a, 1995; Treves & Rolls, 1994) to be bio-

logically plausible.

The research also shows with the integrate-and-fire simulations

that the whole circuit from neocortex to hippocampal CA3 and back

to neocortex when operating in continuous time allows not just CA3,

but the whole neocortex–hippocampus–neocortex system to settle

into a systems-level, long-loop, attractor that potentially enhances

memory recall to the neocortex.

The research also shows that this long loop attractor in inherently

unstable, and that stability may be promoted by high inhibition in CA3

and CA1, and by utilizing the temporal adaptation of firing rates that

is a strong feature of hippocampal neuronal activity, as well as typi-

cally of neocortical neuronal activity.

The research also shows how the whole circuit can operate with

diluted connectivity, which is a key feature of cortical including hippo-

campal connectivity, and which can indeed be computationally useful

in competitive networks such as those in the dentate granule cells and

CA1 by helping their learning to categorize their inputs.

The research here complements other approaches to how “What”
cortical representations of objects and faces are built (Rolls, 2021d,

2023b), and of how cortical “Where” representations are built

(Rolls, 2024b), by showing how representations in these systems can
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be associated together for episodic memory and then recalled later

from a partial recall cue (see also Rolls & Treves, 2024). The model

being developed (Rolls, 2024b) of the ventromedial “Where” cortical

stream for the representation of locations in spatial scenes involves

binding together visual features at a particular location in a scene

complemented by a continuous attractor network that links these fea-

tures based on how far apart they are in a scene to build a map or

chart of the locations of features in a whole scene (De Araujo

et al., 2001; Rolls, 2024b, 2024c; Rolls & Stringer, 2005; Rolls &

Treves, 2024; Stringer et al., 2005).
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