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1 Integrate-and-fire simulations of the mechanisms
of sensory-specific satiety

The architecture implemented with integrate-and-fire neurons is described
in the main text of the paper, and is illustrated in Fig. 2 of the paper (Rolls
et al.; 2025). In this Supplementary Material, the implementation of the
integrate-and-fire simulation (Rolls; 2023) is described.

We use the mathematical formulation of the integrate-and-fire neurons
and synaptic currents described by Brunel and Wang (Brunel and Wang;
2001), and used and further developed in subsequent investigations used
and developed considerably (Wang; 2002; Deco and Rolls; 2006; Loh et al.;
2007; Rolls and Deco; 2016, 2015a,b; Deco et al.; 2013; Swash; 1989; Rolls
et al.; 2012, 2010b,a; Rolls and Deco; 2010; Deco et al.; 2009; Rolls; 2023).
Here we provide a brief summary of this framework.

The dynamics of the sub-threshold membrane potential V of a neuron
are given by the equation:

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t). (1)

Both excitatory and inhibitory neurons have a resting potential VL =
−70 mV, a firing threshold Vthr = −50 mV and a reset potential Vreset =
−55 mV. The membrane parameters are different for both types of neurons:
Excitatory (Inhibitory) neurons are modeled with a membrane capacitance
Cm = 0.5 nF (0.2 nF), a leak conductance gm = 25 nS (20 nS), a membrane
time constant τm = 20 ms (10 ms), and a refractory period tref = 2 ms (1
ms). Values are extracted from McCormick et al (McCormick et al.; 1985).

When the threshold membrane potential Vthr is reached, the neuron is
set to the reset potential Vreset at which it is kept for a refractory period
τref and the action potential is propagated to the other neurons.

Each network has NE = 100 excitatory neurons and NI = 25 inhibitory
neurons which are connected to each other, consistent with the observed pro-
portions of the pyramidal neurons and interneurons in the cerebral cortex
(Braitenberg and Schütz; 1991; Abeles; 1991). The synaptic current im-
pinging on each neuron is given by the sum of recurrent excitatory currents
(IAMPA,rec and INMDA,rec), the external excitatory current(IAMPA,ext), and
the inhibitory current (IGABA):

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t). (2)

The recurrent excitation is mediated by the AMPA and NMDA recep-
tors, inhibition by GABA receptors. In addition, the neurons are exposed to
external Poisson input spike trains mediated by AMPA receptors at a rate
of 2.0 kHz. These can be viewed as originating from Next = 800 external
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neurons at an average rate of 2.5 Hz per neuron, consistent with the spon-
taneous activity observed in the cerebral cortex (Wilson et al.; 1994; Rolls
and Treves; 1998). The currents are defined by:

IAMPA,ext(t) = gAMPA,ext(V (t)− VE)

Next∑
j=1

sAMPA,ext
j (t) (3)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)

NE∑
j=1

wAMPA
ji sAMPA,rec

j (t) (4)

INMDA,rec(t) =
gNMDA(V (t)− VE)

1 + [Mg++]exp(−0.062V (t))/3.57
×

NE∑
j=1

wNMDA
ji sNMDA

j (t)(5)

IGABA(t) = gGABA(V (t)− VI)

NI∑
j=1

wGABA
ji sGABA

j (t) (6)

where VE = 0 mV, VI = −70 mV, wji are the synaptic weights, sj ’s
the fractions of open channels for the different receptors and g’s the synap-
tic conductances for the different channels. The NMDA synaptic current
depends on the membrane potential and the extracellular concentration
of Magnesium ([Mg++] = 1 mM (Jahr and Stevens; 1990)). The values
for the synaptic conductances for excitatory neurons are gAMPA,ext = 2.08
nS, gAMPA,rec = 0.104 nS, gNMDA = 0.327 nS and gGABA = 1.25 nS;
and for inhibitory neurons gAMPA,ext = 1.62 nS, gAMPA,rec = 0.081 nS,
gNMDA = 0.258 nS and gGABA = 0.973 nS for 100 synapses per neuron.
These values are obtained from the ones used by Brunel and Wang (Brunel
and Wang; 2001). The synaptic weights were set so that the excitatory and
inhibitory neurons had a low spontaneous firing rate of several spikes/s. The
fractions of open channels are described by:

dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (7)

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (8)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj(t)(1− sNMDA

j (t)) (9)

dxj(t)

dt
= − xj(t)

τNMDA,rise
+

∑
k

δ(t− tkj ) (10)

dsGABA
j (t)

dt
= −

sGABA
j (t)

τGABA
+
∑
k

δ(t− tkj ), (11)
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where τNMDA,decay = 100 ms is the decay time for NMDA synapses,
τAMPA = 6 ms for AMPA synapses to allow for propagation effects (Hestrin
et al.; 1990; Spruston et al.; 1995) and τGABA = 10 ms for GABA synapses
(Salin and Prince; 1996; Xiang et al.; 1998); τNMDA,rise = 2 ms is the
rise time for NMDA synapses (the rise times for AMPA and GABA are
neglected because they are typically very short) and α = 0.5 ms−1. The
sums over k represent a sum over spikes formulated as δ-Peaks δ(t) emitted
by presynaptic neuron j at time tkj .

The equations were integrated numerically using a forward Euler method
with step size 0.1 ms.

1.1 The model parameters used in the integrate-and-fire sim-
ulations

The fixed parameters of the model are shown in Table 1, and not only pro-
vide information about the values of the parameters used in the simulations,
but also enable them to be compared to experimentally measured values.
The conductance values are similar to those in previous research on attrac-
tor networks (Brunel and Wang; 2001; Rolls et al.; 2010a; Rolls and Deco;
2015b), and the synaptic weights are scaled to produce similar currents from
different sources such as excitatory to inhibitory, inhibitory to excitatory,
and excitatory to excitatory, as in this previous research. The conductances
shown in the Table are for a network with a total number of neurons =
1000, with 800 excitatory neurons and 200 inhibitory neurons. As the total
number of neurons in this simulation was 125, the conductances were scaled
up by 8, to provide for the appropriate total current into each neuron.
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Table 1: Parameters used in the integrate-and-fire simulations
NE 100 in each module
NI 25 in each module
wEtoI 1.0 default, except where stated
wItoE 1.0
wItoI 1.0
Next 800
νext 2.0 kHz
Cm (excitatory) 0.5 nF
Cm (inhibitory) 0.2 nF
gm (excitatory) 25 nS
gm (inhibitory) 20 nS
VL –70 mV
Vthr –50 mV
Vreset –55 mV
VE 0 mV
VI –70 mV
gAMPA,ext (excitatory) 2.08 nS
gAMPA,rec (excitatory) 0.104 nS
gNMDA (excitatory) 0.327 nS
gGABA (excitatory) 1.25 nS
gAMPA,ext (inhibitory) 1.62 nS
gAMPA,rec (inhibitory) 0.081 nS
gNMDA (inhibitory) 0.258 nS
gGABA (inhibitory) 0.973 nS
τNMDA,decay 100 ms
τNMDA,rise 2 ms
τAMPA 6 ms
τGABA 10 ms
α 0.5 ms−1 for NMDA dynamics
τD 2000 s presynaptic depression time constant
X 0.0001 presynaptic depression amount per spike, see text of paper
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